Mister Exam

Other calculators


sqrt(e^(3x+1))

Derivative of sqrt(e^(3x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   __________
  /  3*x + 1 
\/  e        
$$\sqrt{e^{3 x + 1}}$$
  /   __________\
d |  /  3*x + 1 |
--\\/  e        /
dx               
$$\frac{d}{d x} \sqrt{e^{3 x + 1}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   1   3*x                   
   - + ---                   
   2    2   -1 - 3*x  3*x + 1
3*e       *e        *e       
-----------------------------
              2              
$$\frac{3 e^{- 3 x - 1} e^{\frac{3 x}{2} + \frac{1}{2}} e^{3 x + 1}}{2}$$
The second derivative [src]
   1   3*x
   - + ---
   2    2 
9*e       
----------
    4     
$$\frac{9 e^{\frac{3 x}{2} + \frac{1}{2}}}{4}$$
The third derivative [src]
    1   3*x
    - + ---
    2    2 
27*e       
-----------
     8     
$$\frac{27 e^{\frac{3 x}{2} + \frac{1}{2}}}{8}$$
6-th derivative [src]
     1   3*x
     - + ---
     2    2 
729*e       
------------
     64     
$$\frac{729 e^{\frac{3 x}{2} + \frac{1}{2}}}{64}$$
The graph
Derivative of sqrt(e^(3x+1))