Mister Exam

Other calculators


sin(x)-sqrt(3)cos(x)

Derivative of sin(x)-sqrt(3)cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
           ___       
sin(x) - \/ 3 *cos(x)
sin(x)3cos(x)\sin{\left(x \right)} - \sqrt{3} \cos{\left(x \right)}
d /           ___       \
--\sin(x) - \/ 3 *cos(x)/
dx                       
ddx(sin(x)3cos(x))\frac{d}{d x} \left(\sin{\left(x \right)} - \sqrt{3} \cos{\left(x \right)}\right)
Detail solution
  1. Differentiate sin(x)3cos(x)\sin{\left(x \right)} - \sqrt{3} \cos{\left(x \right)} term by term:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosine is negative sine:

          ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

        So, the result is: 3sin(x)- \sqrt{3} \sin{\left(x \right)}

      So, the result is: 3sin(x)\sqrt{3} \sin{\left(x \right)}

    The result is: 3sin(x)+cos(x)\sqrt{3} \sin{\left(x \right)} + \cos{\left(x \right)}

  2. Now simplify:

    2sin(x+π6)2 \sin{\left(x + \frac{\pi}{6} \right)}


The answer is:

2sin(x+π6)2 \sin{\left(x + \frac{\pi}{6} \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
  ___                
\/ 3 *sin(x) + cos(x)
3sin(x)+cos(x)\sqrt{3} \sin{\left(x \right)} + \cos{\left(x \right)}
The second derivative [src]
            ___       
-sin(x) + \/ 3 *cos(x)
sin(x)+3cos(x)- \sin{\left(x \right)} + \sqrt{3} \cos{\left(x \right)}
The third derivative [src]
 /  ___                \
-\\/ 3 *sin(x) + cos(x)/
(3sin(x)+cos(x))- (\sqrt{3} \sin{\left(x \right)} + \cos{\left(x \right)})
The graph
Derivative of sin(x)-sqrt(3)cos(x)