5 sin (x)*cos(x)
sin(x)^5*cos(x)
Apply the product rule:
; to find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
The derivative of cosine is negative sine:
The result is:
Now simplify:
The answer is:
6 2 4 - sin (x) + 5*cos (x)*sin (x)
3 / 2 2 \ -sin (x)*\- 20*cos (x) + 16*sin (x)/*cos(x)
2 / 4 2 2 2 / 2 2 \ 2 / 2 2 \\ sin (x)*\sin (x) - 15*cos (x)*sin (x) - 5*cos (x)*\- 12*cos (x) + 13*sin (x)/ + 15*sin (x)*\sin (x) - 4*cos (x)//