Mister Exam

Other calculators

Derivative of sin^5(x)*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5          
sin (x)*cos(x)
$$\sin^{5}{\left(x \right)} \cos{\left(x \right)}$$
sin(x)^5*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     6           2       4   
- sin (x) + 5*cos (x)*sin (x)
$$- \sin^{6}{\left(x \right)} + 5 \sin^{4}{\left(x \right)} \cos^{2}{\left(x \right)}$$
The second derivative [src]
    3    /        2            2   \       
-sin (x)*\- 20*cos (x) + 16*sin (x)/*cos(x)
$$- \left(16 \sin^{2}{\left(x \right)} - 20 \cos^{2}{\left(x \right)}\right) \sin^{3}{\left(x \right)} \cos{\left(x \right)}$$
The third derivative [src]
   2    /   4            2       2           2    /        2            2   \         2    /   2           2   \\
sin (x)*\sin (x) - 15*cos (x)*sin (x) - 5*cos (x)*\- 12*cos (x) + 13*sin (x)/ + 15*sin (x)*\sin (x) - 4*cos (x)//
$$\left(15 \left(\sin^{2}{\left(x \right)} - 4 \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)} - 5 \left(13 \sin^{2}{\left(x \right)} - 12 \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)} + \sin^{4}{\left(x \right)} - 15 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}\right) \sin^{2}{\left(x \right)}$$