Mister Exam

Other calculators


arcsin(sqrt(x/(x+1)))

Derivative of arcsin(sqrt(x/(x+1)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /    _______\
    |   /   x   |
asin|  /  ----- |
    \\/   x + 1 /
$$\operatorname{asin}{\left(\sqrt{\frac{x}{x + 1}} \right)}$$
  /    /    _______\\
d |    |   /   x   ||
--|asin|  /  ----- ||
dx\    \\/   x + 1 //
$$\frac{d}{d x} \operatorname{asin}{\left(\sqrt{\frac{x}{x + 1}} \right)}$$
The graph
The first derivative [src]
    _______                                 
   /   x            /    1           x     \
  /  ----- *(x + 1)*|--------- - ----------|
\/   x + 1          |2*(x + 1)            2|
                    \            2*(x + 1) /
--------------------------------------------
                   ___________              
                  /       x                 
             x*  /  1 - -----               
               \/       x + 1               
$$\frac{\sqrt{\frac{x}{x + 1}} \left(x + 1\right) \left(- \frac{x}{2 \left(x + 1\right)^{2}} + \frac{1}{2 \left(x + 1\right)}\right)}{x \sqrt{- \frac{x}{x + 1} + 1}}$$
The second derivative [src]
                         /                   x                 x      \
    _______              |            -1 + -----        -1 + -----    |
   /   x    /       x  \ |2     2          1 + x             1 + x    |
  /  ----- *|-1 + -----|*|- + ----- + ---------- + -------------------|
\/   1 + x  \     1 + x/ |x   1 + x       x                /      x  \|
                         |                         (1 + x)*|1 - -----||
                         \                                 \    1 + x//
-----------------------------------------------------------------------
                                  ___________                          
                                 /       x                             
                          4*x*  /  1 - -----                           
                              \/       1 + x                           
$$\frac{\sqrt{\frac{x}{x + 1}} \left(\frac{x}{x + 1} - 1\right) \left(\frac{\frac{x}{x + 1} - 1}{x} + \frac{2}{x + 1} + \frac{\frac{x}{x + 1} - 1}{\left(x + 1\right) \left(- \frac{x}{x + 1} + 1\right)} + \frac{2}{x}\right)}{4 x \sqrt{- \frac{x}{x + 1} + 1}}$$
The third derivative [src]
                         /                                                           2                                                             2                                                  2     \
                         |                                /       x  \   /       x  \                x            /       x  \         /       x  \                      x                /       x  \      |
    _______              |                              3*|-1 + -----|   |-1 + -----|         -1 + -----        3*|-1 + -----|       3*|-1 + -----|               -1 + -----              |-1 + -----|      |
   /   x    /       x  \ |  1       1           1         \     1 + x/   \     1 + x/              1 + x          \     1 + x/         \     1 + x/                    1 + x              \     1 + x/      |
  /  ----- *|-1 + -----|*|- -- - -------- - --------- - -------------- - ------------- - -------------------- - -------------- - ----------------------- - ----------------------- - -----------------------|
\/   1 + x  \     1 + x/ |   2          2   x*(1 + x)           2                2              2 /      x  \    4*x*(1 + x)                           2               /      x  \               /      x  \|
                         |  x    (1 + x)                     4*x              8*x        (1 + x) *|1 - -----|                             2 /      x  \    2*x*(1 + x)*|1 - -----|   4*x*(1 + x)*|1 - -----||
                         |                                                                        \    1 + x/                    8*(1 + x) *|1 - -----|                \    1 + x/               \    1 + x/|
                         \                                                                                                                  \    1 + x/                                                     /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                    ___________                                                                                              
                                                                                                   /       x                                                                                                 
                                                                                              x*  /  1 - -----                                                                                               
                                                                                                \/       1 + x                                                                                               
$$\frac{\sqrt{\frac{x}{x + 1}} \left(\frac{x}{x + 1} - 1\right) \left(- \frac{\left(\frac{x}{x + 1} - 1\right)^{2}}{8 x^{2}} - \frac{3 \left(\frac{x}{x + 1} - 1\right)}{4 x \left(x + 1\right)} - \frac{\left(\frac{x}{x + 1} - 1\right)^{2}}{4 x \left(x + 1\right) \left(- \frac{x}{x + 1} + 1\right)} - \frac{3 \left(\frac{x}{x + 1} - 1\right)}{4 x^{2}} - \frac{1}{\left(x + 1\right)^{2}} - \frac{\frac{x}{x + 1} - 1}{\left(x + 1\right)^{2} \left(- \frac{x}{x + 1} + 1\right)} - \frac{3 \left(\frac{x}{x + 1} - 1\right)^{2}}{8 \left(x + 1\right)^{2} \left(- \frac{x}{x + 1} + 1\right)^{2}} - \frac{1}{x \left(x + 1\right)} - \frac{\frac{x}{x + 1} - 1}{2 x \left(x + 1\right) \left(- \frac{x}{x + 1} + 1\right)} - \frac{1}{x^{2}}\right)}{x \sqrt{- \frac{x}{x + 1} + 1}}$$
The graph
Derivative of arcsin(sqrt(x/(x+1)))