Mister Exam

Derivative of sin(sin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(sin(x))
sin(sin(x))\sin{\left(\sin{\left(x \right)} \right)}
sin(sin(x))
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

  2. The derivative of sine is cosine:

    ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

  3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result of the chain rule is:

    cos(x)cos(sin(x))\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}


The answer is:

cos(x)cos(sin(x))\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
cos(x)*cos(sin(x))
cos(x)cos(sin(x))\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}
The second derivative [src]
 /   2                                    \
-\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/
(sin(x)cos(sin(x))+sin(sin(x))cos2(x))- (\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)})
The third derivative [src]
/                  2                                      \       
\-cos(sin(x)) - cos (x)*cos(sin(x)) + 3*sin(x)*sin(sin(x))/*cos(x)
(3sin(x)sin(sin(x))cos2(x)cos(sin(x))cos(sin(x)))cos(x)\left(3 \sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} - \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} - \cos{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)}
The graph
Derivative of sin(sin(x))