Mister Exam

Derivative of sin(sin(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(sin(x))
$$\sin{\left(\sin{\left(x \right)} \right)}$$
sin(sin(x))
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of sine is cosine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
cos(x)*cos(sin(x))
$$\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}$$
The second derivative [src]
 /   2                                    \
-\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/
$$- (\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)})$$
The third derivative [src]
/                  2                                      \       
\-cos(sin(x)) - cos (x)*cos(sin(x)) + 3*sin(x)*sin(sin(x))/*cos(x)
$$\left(3 \sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} - \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} - \cos{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)}$$
The graph
Derivative of sin(sin(x))