Mister Exam

Derivative of arcsin(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(sin(x))
$$\operatorname{asin}{\left(\sin{\left(x \right)} \right)}$$
asin(sin(x))
The graph
The first derivative [src]
     cos(x)     
----------------
   _____________
  /        2    
\/  1 - sin (x) 
$$\frac{\cos{\left(x \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}}$$
The second derivative [src]
/          2     \       
|       cos (x)  |       
|-1 + -----------|*sin(x)
|            2   |       
\     1 - sin (x)/       
-------------------------
        _____________    
       /        2        
     \/  1 - sin (x)     
$$\frac{\left(-1 + \frac{\cos^{2}{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}}\right) \sin{\left(x \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}}$$
The third derivative [src]
/          2              2            2       2   \       
|       cos (x)      3*sin (x)    3*cos (x)*sin (x)|       
|-1 + ----------- - ----------- + -----------------|*cos(x)
|            2             2                     2 |       
|     1 - sin (x)   1 - sin (x)     /       2   \  |       
\                                   \1 - sin (x)/  /       
-----------------------------------------------------------
                         _____________                     
                        /        2                         
                      \/  1 - sin (x)                      
$$\frac{\left(-1 - \frac{3 \sin^{2}{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} + \frac{\cos^{2}{\left(x \right)}}{1 - \sin^{2}{\left(x \right)}} + \frac{3 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{2}}\right) \cos{\left(x \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}}$$
The graph
Derivative of arcsin(sinx)