Mister Exam

Other calculators


y=x^4*sinsinx

Derivative of y=x^4*sinsinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4            
x *sin(sin(x))
$$x^{4} \sin{\left(\sin{\left(x \right)} \right)}$$
x^4*sin(sin(x))
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   3                4                   
4*x *sin(sin(x)) + x *cos(x)*cos(sin(x))
$$x^{4} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 4 x^{3} \sin{\left(\sin{\left(x \right)} \right)}$$
The second derivative [src]
 2 /                  2 /   2                                    \                         \
x *\12*sin(sin(x)) - x *\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/ + 8*x*cos(x)*cos(sin(x))/
$$x^{2} \left(- x^{2} \left(\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}\right) + 8 x \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 12 \sin{\left(\sin{\left(x \right)} \right)}\right)$$
The third derivative [src]
  /                     2 /   2                                    \    3 /   2                                                    \                                 \
x*\24*sin(sin(x)) - 12*x *\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/ - x *\cos (x)*cos(sin(x)) - 3*sin(x)*sin(sin(x)) + cos(sin(x))/*cos(x) + 36*x*cos(x)*cos(sin(x))/
$$x \left(- x^{3} \left(- 3 \sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} + \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \cos{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)} - 12 x^{2} \left(\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}\right) + 36 x \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 24 \sin{\left(\sin{\left(x \right)} \right)}\right)$$
The graph
Derivative of y=x^4*sinsinx