Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
3 4
4*x *sin(sin(x)) + x *cos(x)*cos(sin(x))
$$x^{4} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 4 x^{3} \sin{\left(\sin{\left(x \right)} \right)}$$
The second derivative
[src]
2 / 2 / 2 \ \
x *\12*sin(sin(x)) - x *\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/ + 8*x*cos(x)*cos(sin(x))/
$$x^{2} \left(- x^{2} \left(\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}\right) + 8 x \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 12 \sin{\left(\sin{\left(x \right)} \right)}\right)$$
The third derivative
[src]
/ 2 / 2 \ 3 / 2 \ \
x*\24*sin(sin(x)) - 12*x *\cos (x)*sin(sin(x)) + cos(sin(x))*sin(x)/ - x *\cos (x)*cos(sin(x)) - 3*sin(x)*sin(sin(x)) + cos(sin(x))/*cos(x) + 36*x*cos(x)*cos(sin(x))/
$$x \left(- x^{3} \left(- 3 \sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} + \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \cos{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)} - 12 x^{2} \left(\sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)}\right) + 36 x \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + 24 \sin{\left(\sin{\left(x \right)} \right)}\right)$$