Mister Exam

Other calculators

Derivative of sin(log(x)^(5))^(2)*x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2/   5   \  
sin \log (x)/*x
$$x \sin^{2}{\left(\log{\left(x \right)}^{5} \right)}$$
sin(log(x)^5)^2*x
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Let .

        2. Apply the power rule: goes to

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of is .

          The result of the chain rule is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Apply the power rule: goes to

    The result is:

  2. Now simplify:


The answer is:

The first derivative [src]
   2/   5   \         4       /   5   \    /   5   \
sin \log (x)/ + 10*log (x)*cos\log (x)/*sin\log (x)/
$$10 \log{\left(x \right)}^{4} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + \sin^{2}{\left(\log{\left(x \right)}^{5} \right)}$$
The second derivative [src]
      3    /       5       2/   5   \        /   5   \    /   5   \        2/   5   \    5         /   5   \           /   5   \\
10*log (x)*\- 5*log (x)*sin \log (x)/ + 4*cos\log (x)/*sin\log (x)/ + 5*cos \log (x)/*log (x) + cos\log (x)/*log(x)*sin\log (x)//
---------------------------------------------------------------------------------------------------------------------------------
                                                                x                                                                
$$\frac{10 \left(- 5 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} + 5 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + 4 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)}^{3}}{x}$$
The third derivative [src]
       2    /        2/   5   \    5            6       2/   5   \         /   5   \    /   5   \     /       2/   5   \    5           /   5   \    /   5   \        5       2/   5   \      /   5   \           /   5   \\                2/   5   \    6            5       2/   5   \        2       /   5   \    /   5   \         /   5   \           /   5   \          10       /   5   \    /   5   \\
-10*log (x)*\- 60*cos \log (x)/*log (x) - 15*log (x)*sin \log (x)/ - 12*cos\log (x)/*sin\log (x)/ + 3*\- 5*cos \log (x)/*log (x) - 4*cos\log (x)/*sin\log (x)/ + 5*log (x)*sin \log (x)/ + cos\log (x)/*log(x)*sin\log (x)//*log(x) + 15*cos \log (x)/*log (x) + 60*log (x)*sin \log (x)/ - 2*log (x)*cos\log (x)/*sin\log (x)/ + 12*cos\log (x)/*log(x)*sin\log (x)/ + 100*log  (x)*cos\log (x)/*sin\log (x)//
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                                        2                                                                                                                                                                                                      
                                                                                                                                                                                                       x                                                                                                                                                                                                       
$$- \frac{10 \left(3 \left(5 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} - 5 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 4 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)} + 100 \log{\left(x \right)}^{10} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 15 \log{\left(x \right)}^{6} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} + 15 \log{\left(x \right)}^{6} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + 60 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} - 60 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} - 2 \log{\left(x \right)}^{2} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + 12 \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 12 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)}^{2}}{x^{2}}$$