Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
Let .
-
The derivative of sine is cosine:
-
Then, apply the chain rule. Multiply by :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
; to find :
-
Apply the power rule: goes to
The result is:
Now simplify:
The answer is:
The first derivative
[src]
2/ 5 \ 4 / 5 \ / 5 \
sin \log (x)/ + 10*log (x)*cos\log (x)/*sin\log (x)/
$$10 \log{\left(x \right)}^{4} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + \sin^{2}{\left(\log{\left(x \right)}^{5} \right)}$$
The second derivative
[src]
3 / 5 2/ 5 \ / 5 \ / 5 \ 2/ 5 \ 5 / 5 \ / 5 \\
10*log (x)*\- 5*log (x)*sin \log (x)/ + 4*cos\log (x)/*sin\log (x)/ + 5*cos \log (x)/*log (x) + cos\log (x)/*log(x)*sin\log (x)//
---------------------------------------------------------------------------------------------------------------------------------
x
$$\frac{10 \left(- 5 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} + 5 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + 4 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)}^{3}}{x}$$
The third derivative
[src]
2 / 2/ 5 \ 5 6 2/ 5 \ / 5 \ / 5 \ / 2/ 5 \ 5 / 5 \ / 5 \ 5 2/ 5 \ / 5 \ / 5 \\ 2/ 5 \ 6 5 2/ 5 \ 2 / 5 \ / 5 \ / 5 \ / 5 \ 10 / 5 \ / 5 \\
-10*log (x)*\- 60*cos \log (x)/*log (x) - 15*log (x)*sin \log (x)/ - 12*cos\log (x)/*sin\log (x)/ + 3*\- 5*cos \log (x)/*log (x) - 4*cos\log (x)/*sin\log (x)/ + 5*log (x)*sin \log (x)/ + cos\log (x)/*log(x)*sin\log (x)//*log(x) + 15*cos \log (x)/*log (x) + 60*log (x)*sin \log (x)/ - 2*log (x)*cos\log (x)/*sin\log (x)/ + 12*cos\log (x)/*log(x)*sin\log (x)/ + 100*log (x)*cos\log (x)/*sin\log (x)//
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
x
$$- \frac{10 \left(3 \left(5 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} - 5 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 4 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)} + 100 \log{\left(x \right)}^{10} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 15 \log{\left(x \right)}^{6} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} + 15 \log{\left(x \right)}^{6} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} + 60 \log{\left(x \right)}^{5} \sin^{2}{\left(\log{\left(x \right)}^{5} \right)} - 60 \log{\left(x \right)}^{5} \cos^{2}{\left(\log{\left(x \right)}^{5} \right)} - 2 \log{\left(x \right)}^{2} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} + 12 \log{\left(x \right)} \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)} - 12 \sin{\left(\log{\left(x \right)}^{5} \right)} \cos{\left(\log{\left(x \right)}^{5} \right)}\right) \log{\left(x \right)}^{2}}{x^{2}}$$