Mister Exam

Derivative of sin(e^x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / x\
sin\e /
$$\sin{\left(e^{x} \right)}$$
d /   / x\\
--\sin\e //
dx         
$$\frac{d}{d x} \sin{\left(e^{x} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of is itself.

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   / x\  x
cos\e /*e 
$$e^{x} \cos{\left(e^{x} \right)}$$
The second derivative [src]
/   x    / x\      / x\\  x
\- e *sin\e / + cos\e //*e 
$$\left(- e^{x} \sin{\left(e^{x} \right)} + \cos{\left(e^{x} \right)}\right) e^{x}$$
The third derivative [src]
/     / x\  2*x      x    / x\      / x\\  x
\- cos\e /*e    - 3*e *sin\e / + cos\e //*e 
$$\left(- e^{2 x} \cos{\left(e^{x} \right)} - 3 e^{x} \sin{\left(e^{x} \right)} + \cos{\left(e^{x} \right)}\right) e^{x}$$
The graph
Derivative of sin(e^x)