/ x\ sin\e /
d / / x\\ --\sin\e // dx
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of is itself.
The result of the chain rule is:
Now simplify:
The answer is:
/ x / x\ / x\\ x \- e *sin\e / + cos\e //*e
/ / x\ 2*x x / x\ / x\\ x \- cos\e /*e - 3*e *sin\e / + cos\e //*e