Detail solution
-
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
The first derivative
[src]
asin(x) /asin(x) log(x) \
x *|------- + -----------|
| x ________|
| / 2 |
\ \/ 1 - x /
$$x^{\operatorname{asin}{\left(x \right)}} \left(\frac{\log{\left(x \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x}\right)$$
The second derivative
[src]
/ 2 \
asin(x) |/asin(x) log(x) \ asin(x) 2 x*log(x) |
x *||------- + -----------| - ------- + ------------- + -----------|
|| x ________| 2 ________ 3/2|
|| / 2 | x / 2 / 2\ |
\\ \/ 1 - x / x*\/ 1 - x \1 - x / /
$$x^{\operatorname{asin}{\left(x \right)}} \left(\frac{x \log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \left(\frac{\log{\left(x \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{2} + \frac{2}{x \sqrt{1 - x^{2}}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2}}\right)$$
The third derivative
[src]
/ 3 2 \
asin(x) |/asin(x) log(x) \ 3 log(x) 3 2*asin(x) /asin(x) log(x) \ / asin(x) 2 x*log(x) \ 3*x *log(x)|
x *||------- + -----------| + ----------- + ----------- - -------------- + --------- + 3*|------- + -----------|*|- ------- + ------------- + -----------| + -----------|
|| x ________| 3/2 3/2 ________ 3 | x ________| | 2 ________ 3/2| 5/2|
|| / 2 | / 2\ / 2\ 2 / 2 x | / 2 | | x / 2 / 2\ | / 2\ |
\\ \/ 1 - x / \1 - x / \1 - x / x *\/ 1 - x \ \/ 1 - x / \ x*\/ 1 - x \1 - x / / \1 - x / /
$$x^{\operatorname{asin}{\left(x \right)}} \left(\frac{3 x^{2} \log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \left(\frac{\log{\left(x \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x}\right)^{3} + 3 \left(\frac{\log{\left(x \right)}}{\sqrt{1 - x^{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{x}\right) \left(\frac{x \log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{2}{x \sqrt{1 - x^{2}}} - \frac{\operatorname{asin}{\left(x \right)}}{x^{2}}\right) + \frac{\log{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{3}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{3}{x^{2} \sqrt{1 - x^{2}}} + \frac{2 \operatorname{asin}{\left(x \right)}}{x^{3}}\right)$$