Mister Exam

Other calculators


y=lnsin(e^x^2)

Derivative of y=lnsin(e^x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   / / 2\\\
   |   | \x /||
log\sin\e    //
$$\log{\left(\sin{\left(e^{x^{2}} \right)} \right)}$$
  /   /   / / 2\\\\
d |   |   | \x /|||
--\log\sin\e    ///
dx                 
$$\frac{d}{d x} \log{\left(\sin{\left(e^{x^{2}} \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       / / 2\\  / 2\
       | \x /|  \x /
2*x*cos\e    /*e    
--------------------
        / / 2\\     
        | \x /|     
     sin\e    /     
$$\frac{2 x e^{x^{2}} \cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}}$$
The second derivative [src]
  /   / / 2\\                        / / 2\\            / / 2\\  / 2\\      
  |   | \x /|         / 2\      2    | \x /|      2    2| \x /|  \x /|  / 2\
  |cos\e    /      2  \x /   2*x *cos\e    /   2*x *cos \e    /*e    |  \x /
2*|---------- - 2*x *e     + --------------- - ----------------------|*e    
  |   / / 2\\                      / / 2\\              / / 2\\      |      
  |   | \x /|                      | \x /|             2| \x /|      |      
  \sin\e    /                   sin\e    /          sin \e    /      /      
$$2 \left(- 2 x^{2} e^{x^{2}} - \frac{2 x^{2} e^{x^{2}} \cos^{2}{\left(e^{x^{2}} \right)}}{\sin^{2}{\left(e^{x^{2}} \right)}} + \frac{2 x^{2} \cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}} + \frac{\cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}}\right) e^{x^{2}}$$
The third derivative [src]
    /                              / / 2\\         / / 2\\  / 2\           / / 2\\            / / 2\\  / 2\            / / 2\\     2           / / 2\\     2\      
    |     / 2\         / 2\        | \x /|        2| \x /|  \x /      2    | \x /|      2    2| \x /|  \x /      2    3| \x /|  2*x       2    | \x /|  2*x |  / 2\
    |     \x /      2  \x /   3*cos\e    /   3*cos \e    /*e       2*x *cos\e    /   6*x *cos \e    /*e       4*x *cos \e    /*e       4*x *cos\e    /*e    |  \x /
4*x*|- 3*e     - 6*x *e     + ------------ - ------------------- + --------------- - ---------------------- + ---------------------- + ---------------------|*e    
    |                             / / 2\\            / / 2\\             / / 2\\              / / 2\\                  / / 2\\                  / / 2\\     |      
    |                             | \x /|           2| \x /|             | \x /|             2| \x /|                 3| \x /|                  | \x /|     |      
    \                          sin\e    /        sin \e    /          sin\e    /          sin \e    /              sin \e    /               sin\e    /     /      
$$4 x \left(\frac{4 x^{2} e^{2 x^{2}} \cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}} + \frac{4 x^{2} e^{2 x^{2}} \cos^{3}{\left(e^{x^{2}} \right)}}{\sin^{3}{\left(e^{x^{2}} \right)}} - 6 x^{2} e^{x^{2}} - \frac{6 x^{2} e^{x^{2}} \cos^{2}{\left(e^{x^{2}} \right)}}{\sin^{2}{\left(e^{x^{2}} \right)}} + \frac{2 x^{2} \cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}} - 3 e^{x^{2}} - \frac{3 e^{x^{2}} \cos^{2}{\left(e^{x^{2}} \right)}}{\sin^{2}{\left(e^{x^{2}} \right)}} + \frac{3 \cos{\left(e^{x^{2}} \right)}}{\sin{\left(e^{x^{2}} \right)}}\right) e^{x^{2}}$$
The graph
Derivative of y=lnsin(e^x^2)