/ / / 2\\\ | | \x /|| log\sin\e //
/ / / / 2\\\\ d | | | \x /||| --\log\sin\e /// dx
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ / 2\\ / 2\ | \x /| \x / 2*x*cos\e /*e -------------------- / / 2\\ | \x /| sin\e /
/ / / 2\\ / / 2\\ / / 2\\ / 2\\ | | \x /| / 2\ 2 | \x /| 2 2| \x /| \x /| / 2\ |cos\e / 2 \x / 2*x *cos\e / 2*x *cos \e /*e | \x / 2*|---------- - 2*x *e + --------------- - ----------------------|*e | / / 2\\ / / 2\\ / / 2\\ | | | \x /| | \x /| 2| \x /| | \sin\e / sin\e / sin \e / /
/ / / 2\\ / / 2\\ / 2\ / / 2\\ / / 2\\ / 2\ / / 2\\ 2 / / 2\\ 2\ | / 2\ / 2\ | \x /| 2| \x /| \x / 2 | \x /| 2 2| \x /| \x / 2 3| \x /| 2*x 2 | \x /| 2*x | / 2\ | \x / 2 \x / 3*cos\e / 3*cos \e /*e 2*x *cos\e / 6*x *cos \e /*e 4*x *cos \e /*e 4*x *cos\e /*e | \x / 4*x*|- 3*e - 6*x *e + ------------ - ------------------- + --------------- - ---------------------- + ---------------------- + ---------------------|*e | / / 2\\ / / 2\\ / / 2\\ / / 2\\ / / 2\\ / / 2\\ | | | \x /| 2| \x /| | \x /| 2| \x /| 3| \x /| | \x /| | \ sin\e / sin \e / sin\e / sin \e / sin \e / sin\e / /