Mister Exam

Other calculators


sin(4*x)^(2)

Derivative of sin(4*x)^(2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
sin (4*x)
sin2(4x)\sin^{2}{\left(4 x \right)}
d /   2     \
--\sin (4*x)/
dx           
ddxsin2(4x)\frac{d}{d x} \sin^{2}{\left(4 x \right)}
Detail solution
  1. Let u=sin(4x)u = \sin{\left(4 x \right)}.

  2. Apply the power rule: u2u^{2} goes to 2u2 u

  3. Then, apply the chain rule. Multiply by ddxsin(4x)\frac{d}{d x} \sin{\left(4 x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4cos(4x)4 \cos{\left(4 x \right)}

    The result of the chain rule is:

    8sin(4x)cos(4x)8 \sin{\left(4 x \right)} \cos{\left(4 x \right)}


The answer is:

8sin(4x)cos(4x)8 \sin{\left(4 x \right)} \cos{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
8*cos(4*x)*sin(4*x)
8sin(4x)cos(4x)8 \sin{\left(4 x \right)} \cos{\left(4 x \right)}
The second derivative [src]
   /   2           2     \
32*\cos (4*x) - sin (4*x)/
32(sin2(4x)+cos2(4x))32 \left(- \sin^{2}{\left(4 x \right)} + \cos^{2}{\left(4 x \right)}\right)
The third derivative [src]
-512*cos(4*x)*sin(4*x)
512sin(4x)cos(4x)- 512 \sin{\left(4 x \right)} \cos{\left(4 x \right)}
The graph
Derivative of sin(4*x)^(2)