/ 2\ \3 / (sin(x))
/ / 2\\ d | \3 /| --\(sin(x)) / dx
Let u=sin(x)u = \sin{\left(x \right)}u=sin(x).
Apply the power rule: u32u^{3^{2}}u32 goes to 9u32u\frac{9 u^{3^{2}}}{u}u9u32
Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}dxdsin(x):
The derivative of sine is cosine:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2\ \3 / 9*(sin(x)) *cos(x) --------------------- sin(x)
7 / 2 2 \ 9*sin (x)*\- sin (x) + 8*cos (x)/
6 / 2 2 \ 9*sin (x)*\- 25*sin (x) + 56*cos (x)/*cos(x)