Mister Exam

Derivative of y=sin³(x²-4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/ 2      \
sin \x  - 4*x/
$$\sin^{3}{\left(x^{2} - 4 x \right)}$$
d /   3/ 2      \\
--\sin \x  - 4*x//
dx                
$$\frac{d}{d x} \sin^{3}{\left(x^{2} - 4 x \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2/ 2      \               / 2      \
3*sin \x  - 4*x/*(-4 + 2*x)*cos\x  - 4*x/
$$3 \cdot \left(2 x - 4\right) \sin^{2}{\left(x^{2} - 4 x \right)} \cos{\left(x^{2} - 4 x \right)}$$
The second derivative [src]
  /                                            2    2                         2    2            \                
6*\cos(x*(-4 + x))*sin(x*(-4 + x)) - 2*(-2 + x) *sin (x*(-4 + x)) + 4*(-2 + x) *cos (x*(-4 + x))/*sin(x*(-4 + x))
$$6 \left(- 2 \left(x - 2\right)^{2} \sin^{2}{\left(x \left(x - 4\right) \right)} + 4 \left(x - 2\right)^{2} \cos^{2}{\left(x \left(x - 4\right) \right)} + \sin{\left(x \left(x - 4\right) \right)} \cos{\left(x \left(x - 4\right) \right)}\right) \sin{\left(x \left(x - 4\right) \right)}$$
The third derivative [src]
            /       3                         2    3                    2                                          2    2                            \
12*(-2 + x)*\- 3*sin (x*(-4 + x)) + 4*(-2 + x) *cos (x*(-4 + x)) + 6*cos (x*(-4 + x))*sin(x*(-4 + x)) - 14*(-2 + x) *sin (x*(-4 + x))*cos(x*(-4 + x))/
$$12 \left(x - 2\right) \left(- 14 \left(x - 2\right)^{2} \sin^{2}{\left(x \left(x - 4\right) \right)} \cos{\left(x \left(x - 4\right) \right)} + 4 \left(x - 2\right)^{2} \cos^{3}{\left(x \left(x - 4\right) \right)} - 3 \sin^{3}{\left(x \left(x - 4\right) \right)} + 6 \sin{\left(x \left(x - 4\right) \right)} \cos^{2}{\left(x \left(x - 4\right) \right)}\right)$$
The graph
Derivative of y=sin³(x²-4x)