Mister Exam

Derivative of y=sin³(x²+2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3/ 2      \
sin \x  + 2*x/
$$\sin^{3}{\left(x^{2} + 2 x \right)}$$
d /   3/ 2      \\
--\sin \x  + 2*x//
dx                
$$\frac{d}{d x} \sin^{3}{\left(x^{2} + 2 x \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2/ 2      \              / 2      \
3*sin \x  + 2*x/*(2 + 2*x)*cos\x  + 2*x/
$$3 \cdot \left(2 x + 2\right) \sin^{2}{\left(x^{2} + 2 x \right)} \cos{\left(x^{2} + 2 x \right)}$$
The second derivative [src]
  /                                         2    2                       2    2           \               
6*\cos(x*(2 + x))*sin(x*(2 + x)) - 2*(1 + x) *sin (x*(2 + x)) + 4*(1 + x) *cos (x*(2 + x))/*sin(x*(2 + x))
$$6 \left(- 2 \left(x + 1\right)^{2} \sin^{2}{\left(x \left(x + 2\right) \right)} + 4 \left(x + 1\right)^{2} \cos^{2}{\left(x \left(x + 2\right) \right)} + \sin{\left(x \left(x + 2\right) \right)} \cos{\left(x \left(x + 2\right) \right)}\right) \sin{\left(x \left(x + 2\right) \right)}$$
The third derivative [src]
           /       3                       2    3                   2                                       2    2                          \
12*(1 + x)*\- 3*sin (x*(2 + x)) + 4*(1 + x) *cos (x*(2 + x)) + 6*cos (x*(2 + x))*sin(x*(2 + x)) - 14*(1 + x) *sin (x*(2 + x))*cos(x*(2 + x))/
$$12 \left(x + 1\right) \left(- 14 \left(x + 1\right)^{2} \sin^{2}{\left(x \left(x + 2\right) \right)} \cos{\left(x \left(x + 2\right) \right)} + 4 \left(x + 1\right)^{2} \cos^{3}{\left(x \left(x + 2\right) \right)} - 3 \sin^{3}{\left(x \left(x + 2\right) \right)} + 6 \sin{\left(x \left(x + 2\right) \right)} \cos^{2}{\left(x \left(x + 2\right) \right)}\right)$$
The graph
Derivative of y=sin³(x²+2x)