3/ 2 \ sin \x + 2*x/
d / 3/ 2 \\ --\sin \x + 2*x// dx
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2/ 2 \ / 2 \ 3*sin \x + 2*x/*(2 + 2*x)*cos\x + 2*x/
/ 2 2 2 2 \ 6*\cos(x*(2 + x))*sin(x*(2 + x)) - 2*(1 + x) *sin (x*(2 + x)) + 4*(1 + x) *cos (x*(2 + x))/*sin(x*(2 + x))
/ 3 2 3 2 2 2 \ 12*(1 + x)*\- 3*sin (x*(2 + x)) + 4*(1 + x) *cos (x*(2 + x)) + 6*cos (x*(2 + x))*sin(x*(2 + x)) - 14*(1 + x) *sin (x*(2 + x))*cos(x*(2 + x))/