sin(2*x) ------------ / 81\ sin|x + ---| \ 100/
sin(2*x)/sin(x + 81/100)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 81\
cos|x + ---|*sin(2*x)
2*cos(2*x) \ 100/
------------ - ---------------------
/ 81\ 2/ 81\
sin|x + ---| sin |x + ---|
\ 100/ \ 100/
/ 2/ 81 \\ / 81 \
| 2*cos |--- + x|| 4*cos(2*x)*cos|--- + x|
| \100 /| \100 /
-4*sin(2*x) + |1 + ---------------|*sin(2*x) - -----------------------
| 2/ 81 \ | / 81 \
| sin |--- + x| | sin|--- + x|
\ \100 / / \100 /
----------------------------------------------------------------------
/ 81 \
sin|--- + x|
\100 /
/ 2/ 81 \\
| 6*cos |--- + x||
| \100 /| / 81 \
|5 + ---------------|*cos|--- + x|*sin(2*x)
/ 2/ 81 \\ / 81 \ | 2/ 81 \ | \100 /
| 2*cos |--- + x|| 12*cos|--- + x|*sin(2*x) | sin |--- + x| |
| \100 /| \100 / \ \100 / /
-8*cos(2*x) + 6*|1 + ---------------|*cos(2*x) + ------------------------ - -------------------------------------------
| 2/ 81 \ | / 81 \ / 81 \
| sin |--- + x| | sin|--- + x| sin|--- + x|
\ \100 / / \100 / \100 /
-----------------------------------------------------------------------------------------------------------------------
/ 81 \
sin|--- + x|
\100 /