sin(2*x) ------------ / 81\ sin|x + ---| \ 100/
sin(2*x)/sin(x + 81/100)
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 81\ cos|x + ---|*sin(2*x) 2*cos(2*x) \ 100/ ------------ - --------------------- / 81\ 2/ 81\ sin|x + ---| sin |x + ---| \ 100/ \ 100/
/ 2/ 81 \\ / 81 \ | 2*cos |--- + x|| 4*cos(2*x)*cos|--- + x| | \100 /| \100 / -4*sin(2*x) + |1 + ---------------|*sin(2*x) - ----------------------- | 2/ 81 \ | / 81 \ | sin |--- + x| | sin|--- + x| \ \100 / / \100 / ---------------------------------------------------------------------- / 81 \ sin|--- + x| \100 /
/ 2/ 81 \\ | 6*cos |--- + x|| | \100 /| / 81 \ |5 + ---------------|*cos|--- + x|*sin(2*x) / 2/ 81 \\ / 81 \ | 2/ 81 \ | \100 / | 2*cos |--- + x|| 12*cos|--- + x|*sin(2*x) | sin |--- + x| | | \100 /| \100 / \ \100 / / -8*cos(2*x) + 6*|1 + ---------------|*cos(2*x) + ------------------------ - ------------------------------------------- | 2/ 81 \ | / 81 \ / 81 \ | sin |--- + x| | sin|--- + x| sin|--- + x| \ \100 / / \100 / \100 / ----------------------------------------------------------------------------------------------------------------------- / 81 \ sin|--- + x| \100 /