Mister Exam

Other calculators

Derivative of sin(2x)/(sin(x+0.81))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  sin(2*x)  
------------
   /     81\
sin|x + ---|
   \    100/
$$\frac{\sin{\left(2 x \right)}}{\sin{\left(x + \frac{81}{100} \right)}}$$
sin(2*x)/sin(x + 81/100)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    To find :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                  /     81\         
               cos|x + ---|*sin(2*x)
 2*cos(2*x)       \    100/         
------------ - ---------------------
   /     81\          2/     81\    
sin|x + ---|       sin |x + ---|    
   \    100/           \    100/    
$$- \frac{\sin{\left(2 x \right)} \cos{\left(x + \frac{81}{100} \right)}}{\sin^{2}{\left(x + \frac{81}{100} \right)}} + \frac{2 \cos{\left(2 x \right)}}{\sin{\left(x + \frac{81}{100} \right)}}$$
The second derivative [src]
              /         2/ 81    \\                          / 81    \
              |    2*cos |--- + x||            4*cos(2*x)*cos|--- + x|
              |          \100    /|                          \100    /
-4*sin(2*x) + |1 + ---------------|*sin(2*x) - -----------------------
              |        2/ 81    \ |                     / 81    \     
              |     sin |--- + x| |                  sin|--- + x|     
              \         \100    / /                     \100    /     
----------------------------------------------------------------------
                                / 81    \                             
                             sin|--- + x|                             
                                \100    /                             
$$\frac{\left(1 + \frac{2 \cos^{2}{\left(x + \frac{81}{100} \right)}}{\sin^{2}{\left(x + \frac{81}{100} \right)}}\right) \sin{\left(2 x \right)} - 4 \sin{\left(2 x \right)} - \frac{4 \cos{\left(2 x \right)} \cos{\left(x + \frac{81}{100} \right)}}{\sin{\left(x + \frac{81}{100} \right)}}}{\sin{\left(x + \frac{81}{100} \right)}}$$
The third derivative [src]
                                                                            /         2/ 81    \\                      
                                                                            |    6*cos |--- + x||                      
                                                                            |          \100    /|    / 81    \         
                                                                            |5 + ---------------|*cos|--- + x|*sin(2*x)
                /         2/ 81    \\                  / 81    \            |        2/ 81    \ |    \100    /         
                |    2*cos |--- + x||            12*cos|--- + x|*sin(2*x)   |     sin |--- + x| |                      
                |          \100    /|                  \100    /            \         \100    / /                      
-8*cos(2*x) + 6*|1 + ---------------|*cos(2*x) + ------------------------ - -------------------------------------------
                |        2/ 81    \ |                     / 81    \                            / 81    \               
                |     sin |--- + x| |                  sin|--- + x|                         sin|--- + x|               
                \         \100    / /                     \100    /                            \100    /               
-----------------------------------------------------------------------------------------------------------------------
                                                         / 81    \                                                     
                                                      sin|--- + x|                                                     
                                                         \100    /                                                     
$$\frac{6 \left(1 + \frac{2 \cos^{2}{\left(x + \frac{81}{100} \right)}}{\sin^{2}{\left(x + \frac{81}{100} \right)}}\right) \cos{\left(2 x \right)} - \frac{\left(5 + \frac{6 \cos^{2}{\left(x + \frac{81}{100} \right)}}{\sin^{2}{\left(x + \frac{81}{100} \right)}}\right) \sin{\left(2 x \right)} \cos{\left(x + \frac{81}{100} \right)}}{\sin{\left(x + \frac{81}{100} \right)}} + \frac{12 \sin{\left(2 x \right)} \cos{\left(x + \frac{81}{100} \right)}}{\sin{\left(x + \frac{81}{100} \right)}} - 8 \cos{\left(2 x \right)}}{\sin{\left(x + \frac{81}{100} \right)}}$$