Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$22 \sin^{21}{\left(x \right)} \cos{\left(x \right)}$$
The second derivative
[src]
20 / 2 2 \
22*sin (x)*\- sin (x) + 21*cos (x)/
$$22 \left(- \sin^{2}{\left(x \right)} + 21 \cos^{2}{\left(x \right)}\right) \sin^{20}{\left(x \right)}$$
The third derivative
[src]
19 / 2 2 \
88*sin (x)*\- 16*sin (x) + 105*cos (x)/*cos(x)
$$88 \left(- 16 \sin^{2}{\left(x \right)} + 105 \cos^{2}{\left(x \right)}\right) \sin^{19}{\left(x \right)} \cos{\left(x \right)}$$