Mister Exam

Derivative of sin²2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   22   
sin  (x)
sin22(x)\sin^{22}{\left(x \right)}
d /   22   \
--\sin  (x)/
dx          
ddxsin22(x)\frac{d}{d x} \sin^{22}{\left(x \right)}
Detail solution
  1. Let u=sin(x)u = \sin{\left(x \right)}.

  2. Apply the power rule: u22u^{22} goes to 22u2122 u^{21}

  3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    The result of the chain rule is:

    22sin21(x)cos(x)22 \sin^{21}{\left(x \right)} \cos{\left(x \right)}


The answer is:

22sin21(x)cos(x)22 \sin^{21}{\left(x \right)} \cos{\left(x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
      21          
22*sin  (x)*cos(x)
22sin21(x)cos(x)22 \sin^{21}{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
      20    /     2            2   \
22*sin  (x)*\- sin (x) + 21*cos (x)/
22(sin2(x)+21cos2(x))sin20(x)22 \left(- \sin^{2}{\left(x \right)} + 21 \cos^{2}{\left(x \right)}\right) \sin^{20}{\left(x \right)}
The third derivative [src]
      19    /        2             2   \       
88*sin  (x)*\- 16*sin (x) + 105*cos (x)/*cos(x)
88(16sin2(x)+105cos2(x))sin19(x)cos(x)88 \left(- 16 \sin^{2}{\left(x \right)} + 105 \cos^{2}{\left(x \right)}\right) \sin^{19}{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of sin²2x