22 sin (x)
d / 22 \ --\sin (x)/ dx
Let u=sin(x)u = \sin{\left(x \right)}u=sin(x).
Apply the power rule: u22u^{22}u22 goes to 22u2122 u^{21}22u21
Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}dxdsin(x):
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
21 22*sin (x)*cos(x)
20 / 2 2 \ 22*sin (x)*\- sin (x) + 21*cos (x)/
19 / 2 2 \ 88*sin (x)*\- 16*sin (x) + 105*cos (x)/*cos(x)