Mister Exam

Derivative of f(x)=xsin²(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2     
x*sin (2*x)
xsin2(2x)x \sin^{2}{\left(2 x \right)}
x*sin(2*x)^2
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=sin2(2x)g{\left(x \right)} = \sin^{2}{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsin(2x)\frac{d}{d x} \sin{\left(2 x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      The result of the chain rule is:

      4sin(2x)cos(2x)4 \sin{\left(2 x \right)} \cos{\left(2 x \right)}

    The result is: 4xsin(2x)cos(2x)+sin2(2x)4 x \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin^{2}{\left(2 x \right)}

  2. Now simplify:

    2xsin(4x)cos(4x)2+122 x \sin{\left(4 x \right)} - \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}


The answer is:

2xsin(4x)cos(4x)2+122 x \sin{\left(4 x \right)} - \frac{\cos{\left(4 x \right)}}{2} + \frac{1}{2}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
   2                             
sin (2*x) + 4*x*cos(2*x)*sin(2*x)
4xsin(2x)cos(2x)+sin2(2x)4 x \sin{\left(2 x \right)} \cos{\left(2 x \right)} + \sin^{2}{\left(2 x \right)}
The second derivative [src]
  /                      /   2           2     \\
8*\cos(2*x)*sin(2*x) - x*\sin (2*x) - cos (2*x)//
8(x(sin2(2x)cos2(2x))+sin(2x)cos(2x))8 \left(- x \left(\sin^{2}{\left(2 x \right)} - \cos^{2}{\left(2 x \right)}\right) + \sin{\left(2 x \right)} \cos{\left(2 x \right)}\right)
The third derivative [src]
  /       2             2                             \
8*\- 3*sin (2*x) + 3*cos (2*x) - 8*x*cos(2*x)*sin(2*x)/
8(8xsin(2x)cos(2x)3sin2(2x)+3cos2(2x))8 \left(- 8 x \sin{\left(2 x \right)} \cos{\left(2 x \right)} - 3 \sin^{2}{\left(2 x \right)} + 3 \cos^{2}{\left(2 x \right)}\right)