Mister Exam

Derivative of ((1\4)sin²(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2     
sin (2*x)
---------
    4    
sin2(2x)4\frac{\sin^{2}{\left(2 x \right)}}{4}
sin(2*x)^2/4
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=sin(2x)u = \sin{\left(2 x \right)}.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddxsin(2x)\frac{d}{d x} \sin{\left(2 x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      The result of the chain rule is:

      4sin(2x)cos(2x)4 \sin{\left(2 x \right)} \cos{\left(2 x \right)}

    So, the result is: sin(2x)cos(2x)\sin{\left(2 x \right)} \cos{\left(2 x \right)}

  2. Now simplify:

    sin(4x)2\frac{\sin{\left(4 x \right)}}{2}


The answer is:

sin(4x)2\frac{\sin{\left(4 x \right)}}{2}

The graph
02468-8-6-4-2-10101-1
The first derivative [src]
cos(2*x)*sin(2*x)
sin(2x)cos(2x)\sin{\left(2 x \right)} \cos{\left(2 x \right)}
The second derivative [src]
  /   2           2     \
2*\cos (2*x) - sin (2*x)/
2(sin2(2x)+cos2(2x))2 \left(- \sin^{2}{\left(2 x \right)} + \cos^{2}{\left(2 x \right)}\right)
The third derivative [src]
-16*cos(2*x)*sin(2*x)
16sin(2x)cos(2x)- 16 \sin{\left(2 x \right)} \cos{\left(2 x \right)}