Mister Exam

Other calculators


pi*sin((pi/3)*t)

Derivative of pi*sin((pi/3)*t)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /pi*t\
pi*sin|----|
      \ 3  /
$$\pi \sin{\left(\frac{\pi t}{3} \right)}$$
d /      /pi*t\\
--|pi*sin|----||
dt\      \ 3  //
$$\frac{d}{d t} \pi \sin{\left(\frac{\pi t}{3} \right)}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
  2    /pi*t\
pi *cos|----|
       \ 3  /
-------------
      3      
$$\frac{\pi^{2} \cos{\left(\frac{\pi t}{3} \right)}}{3}$$
The second derivative [src]
   3    /pi*t\ 
-pi *sin|----| 
        \ 3  / 
---------------
       9       
$$- \frac{\pi^{3} \sin{\left(\frac{\pi t}{3} \right)}}{9}$$
The third derivative [src]
   4    /pi*t\ 
-pi *cos|----| 
        \ 3  / 
---------------
       27      
$$- \frac{\pi^{4} \cos{\left(\frac{\pi t}{3} \right)}}{27}$$
The graph
Derivative of pi*sin((pi/3)*t)