Mister Exam

Other calculators


(2pi*sin((pi/3)t))/3

Derivative of (2pi*sin((pi/3)t))/3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /pi*t\
2*pi*sin|----|
        \ 3  /
--------------
      3       
$$\frac{2 \pi \sin{\left(\frac{\pi t}{3} \right)}}{3}$$
  /        /pi*t\\
  |2*pi*sin|----||
d |        \ 3  /|
--|--------------|
dt\      3       /
$$\frac{d}{d t} \frac{2 \pi \sin{\left(\frac{\pi t}{3} \right)}}{3}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result of the chain rule is:

    So, the result is:


The answer is:

The graph
The first derivative [src]
    2    /pi*t\
2*pi *cos|----|
         \ 3  /
---------------
       9       
$$\frac{2 \pi^{2} \cos{\left(\frac{\pi t}{3} \right)}}{9}$$
The second derivative [src]
     3    /pi*t\
-2*pi *sin|----|
          \ 3  /
----------------
       27       
$$- \frac{2 \pi^{3} \sin{\left(\frac{\pi t}{3} \right)}}{27}$$
The third derivative [src]
     4    /pi*t\
-2*pi *cos|----|
          \ 3  /
----------------
       81       
$$- \frac{2 \pi^{4} \cos{\left(\frac{\pi t}{3} \right)}}{81}$$
The graph
Derivative of (2pi*sin((pi/3)t))/3