Mister Exam

Other calculators


1/(x^2-2x)

Derivative of 1/(x^2-2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   1    
--------
 2      
x  - 2*x
$$\frac{1}{x^{2} - 2 x}$$
1/(x^2 - 2*x)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  2 - 2*x  
-----------
          2
/ 2      \ 
\x  - 2*x/ 
$$\frac{2 - 2 x}{\left(x^{2} - 2 x\right)^{2}}$$
The second derivative [src]
  /               2\
  |     4*(-1 + x) |
2*|-1 + -----------|
  \      x*(-2 + x)/
--------------------
     2         2    
    x *(-2 + x)     
$$\frac{2 \left(-1 + \frac{4 \left(x - 1\right)^{2}}{x \left(x - 2\right)}\right)}{x^{2} \left(x - 2\right)^{2}}$$
The third derivative [src]
   /              2\         
   |    2*(-1 + x) |         
24*|1 - -----------|*(-1 + x)
   \     x*(-2 + x)/         
-----------------------------
          3         3        
         x *(-2 + x)         
$$\frac{24 \left(1 - \frac{2 \left(x - 1\right)^{2}}{x \left(x - 2\right)}\right) \left(x - 1\right)}{x^{3} \left(x - 2\right)^{3}}$$
The graph
Derivative of 1/(x^2-2x)