Mister Exam

Other calculators


1/((x-2)*(x^2-1))

Derivative of 1/((x-2)*(x^2-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1        
1*----------------
          / 2    \
  (x - 2)*\x  - 1/
11(x2)(x21)1 \cdot \frac{1}{\left(x - 2\right) \left(x^{2} - 1\right)}
d /         1        \
--|1*----------------|
dx|          / 2    \|
  \  (x - 2)*\x  - 1//
ddx11(x2)(x21)\frac{d}{d x} 1 \cdot \frac{1}{\left(x - 2\right) \left(x^{2} - 1\right)}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1f{\left(x \right)} = 1 and g(x)=(x2)(x21)g{\left(x \right)} = \left(x - 2\right) \left(x^{2} - 1\right).

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of the constant 11 is zero.

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=x21f{\left(x \right)} = x^{2} - 1; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate x21x^{2} - 1 term by term:

        1. The derivative of the constant 1-1 is zero.

        2. Apply the power rule: x2x^{2} goes to 2x2 x

        The result is: 2x2 x

      g(x)=x2g{\left(x \right)} = x - 2; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x2x - 2 term by term:

        1. The derivative of the constant 2-2 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result is: x2+2x(x2)1x^{2} + 2 x \left(x - 2\right) - 1

    Now plug in to the quotient rule:

    x22x(x2)+1(x2)2(x21)2\frac{- x^{2} - 2 x \left(x - 2\right) + 1}{\left(x - 2\right)^{2} \left(x^{2} - 1\right)^{2}}


The answer is:

x22x(x2)+1(x2)2(x21)2\frac{- x^{2} - 2 x \left(x - 2\right) + 1}{\left(x - 2\right)^{2} \left(x^{2} - 1\right)^{2}}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
       1         /     2              \
----------------*\1 - x  - 2*x*(x - 2)/
        / 2    \                       
(x - 2)*\x  - 1/                       
---------------------------------------
                    / 2    \           
            (x - 2)*\x  - 1/           
1(x2)(x21)(x22x(x2)+1)(x2)(x21)\frac{\frac{1}{\left(x - 2\right) \left(x^{2} - 1\right)} \left(- x^{2} - 2 x \left(x - 2\right) + 1\right)}{\left(x - 2\right) \left(x^{2} - 1\right)}
The second derivative [src]
                2                                                                    /      2               \
          -1 + x  + 2*x*(-2 + x)   /  1        2*x  \ /      2               \   2*x*\-1 + x  + 2*x*(-2 + x)/
4 - 6*x + ---------------------- + |------ + -------|*\-1 + x  + 2*x*(-2 + x)/ + ----------------------------
                  -2 + x           |-2 + x         2|                                            2           
                                   \         -1 + x /                                      -1 + x            
-------------------------------------------------------------------------------------------------------------
                                                      2                                                      
                                             /      2\          2                                            
                                             \-1 + x / *(-2 + x)                                             
6x+2x(x2+2x(x2)1)x21+(2xx21+1x2)(x2+2x(x2)1)+4+x2+2x(x2)1x2(x2)2(x21)2\frac{- 6 x + \frac{2 x \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x^{2} - 1} + \left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) \left(x^{2} + 2 x \left(x - 2\right) - 1\right) + 4 + \frac{x^{2} + 2 x \left(x - 2\right) - 1}{x - 2}}{\left(x - 2\right)^{2} \left(x^{2} - 1\right)^{2}}
The third derivative [src]
 /                                                                                                                                                                                                    /  1        2*x  \ /      2               \                                                          /  1        2*x  \ /      2               \                               \ 
 |                                                                                                                                                                                                    |------ + -------|*\-1 + x  + 2*x*(-2 + x)/                                                      2*x*|------ + -------|*\-1 + x  + 2*x*(-2 + x)/                               | 
 |                     /      2               \                                                                /                            2                        \     /      2               \   |-2 + x         2|                                                  2 /      2               \       |-2 + x         2|                                /      2               \| 
 |    6*(-2 + 3*x)   2*\-1 + x  + 2*x*(-2 + x)/                /  1        2*x  \     /      2               \ |    1          1         4*x              2*x        |   3*\-1 + x  + 2*x*(-2 + x)/   \         -1 + x /                            12*x*(-2 + 3*x)   12*x *\-1 + x  + 2*x*(-2 + x)/       \         -1 + x /                            8*x*\-1 + x  + 2*x*(-2 + x)/| 
-|6 - ------------ - -------------------------- - 2*(-2 + 3*x)*|------ + -------| + 2*\-1 + x  + 2*x*(-2 + x)/*|--------- - ------- + ---------- + ------------------| + -------------------------- + ------------------------------------------- - --------------- + ------------------------------ + ----------------------------------------------- + ----------------------------| 
 |       -2 + x                     2                          |-2 + x         2|                              |        2         2            2   /      2\         |                   2                               -2 + x                               2                          2                                       2                            /      2\              | 
 |                            -1 + x                           \         -1 + x /                              |(-2 + x)    -1 + x    /      2\    \-1 + x /*(-2 + x)|           (-2 + x)                                                               -1 + x                  /      2\                                  -1 + x                             \-1 + x /*(-2 + x)     | 
 \                                                                                                             \                      \-1 + x /                      /                                                                                                          \-1 + x /                                                                                            / 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                           2                                                                                                                                                                                           
                                                                                                                                                                                  /      2\          2                                                                                                                                                                                 
                                                                                                                                                                                  \-1 + x / *(-2 + x)                                                                                                                                                                                  
12x2(x2+2x(x2)1)(x21)212x(3x2)x21+2x(2xx21+1x2)(x2+2x(x2)1)x21+8x(x2+2x(x2)1)(x2)(x21)2(3x2)(2xx21+1x2)+2(x2+2x(x2)1)(4x2(x21)2+2x(x2)(x21)1x21+1(x2)2)+62(x2+2x(x2)1)x216(3x2)x2+(2xx21+1x2)(x2+2x(x2)1)x2+3(x2+2x(x2)1)(x2)2(x2)2(x21)2- \frac{\frac{12 x^{2} \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x^{2} - 1\right)^{2}} - \frac{12 x \left(3 x - 2\right)}{x^{2} - 1} + \frac{2 x \left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x^{2} - 1} + \frac{8 x \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x - 2\right) \left(x^{2} - 1\right)} - 2 \cdot \left(3 x - 2\right) \left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) + 2 \left(x^{2} + 2 x \left(x - 2\right) - 1\right) \left(\frac{4 x^{2}}{\left(x^{2} - 1\right)^{2}} + \frac{2 x}{\left(x - 2\right) \left(x^{2} - 1\right)} - \frac{1}{x^{2} - 1} + \frac{1}{\left(x - 2\right)^{2}}\right) + 6 - \frac{2 \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x^{2} - 1} - \frac{6 \cdot \left(3 x - 2\right)}{x - 2} + \frac{\left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x - 2} + \frac{3 \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x - 2\right)^{2}}}{\left(x - 2\right)^{2} \left(x^{2} - 1\right)^{2}}
3-я производная [src]
 /                                                                                                                                                                                                    /  1        2*x  \ /      2               \                                                          /  1        2*x  \ /      2               \                               \ 
 |                                                                                                                                                                                                    |------ + -------|*\-1 + x  + 2*x*(-2 + x)/                                                      2*x*|------ + -------|*\-1 + x  + 2*x*(-2 + x)/                               | 
 |                     /      2               \                                                                /                            2                        \     /      2               \   |-2 + x         2|                                                  2 /      2               \       |-2 + x         2|                                /      2               \| 
 |    6*(-2 + 3*x)   2*\-1 + x  + 2*x*(-2 + x)/                /  1        2*x  \     /      2               \ |    1          1         4*x              2*x        |   3*\-1 + x  + 2*x*(-2 + x)/   \         -1 + x /                            12*x*(-2 + 3*x)   12*x *\-1 + x  + 2*x*(-2 + x)/       \         -1 + x /                            8*x*\-1 + x  + 2*x*(-2 + x)/| 
-|6 - ------------ - -------------------------- - 2*(-2 + 3*x)*|------ + -------| + 2*\-1 + x  + 2*x*(-2 + x)/*|--------- - ------- + ---------- + ------------------| + -------------------------- + ------------------------------------------- - --------------- + ------------------------------ + ----------------------------------------------- + ----------------------------| 
 |       -2 + x                     2                          |-2 + x         2|                              |        2         2            2   /      2\         |                   2                               -2 + x                               2                          2                                       2                            /      2\              | 
 |                            -1 + x                           \         -1 + x /                              |(-2 + x)    -1 + x    /      2\    \-1 + x /*(-2 + x)|           (-2 + x)                                                               -1 + x                  /      2\                                  -1 + x                             \-1 + x /*(-2 + x)     | 
 \                                                                                                             \                      \-1 + x /                      /                                                                                                          \-1 + x /                                                                                            / 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                                           2                                                                                                                                                                                           
                                                                                                                                                                                  /      2\          2                                                                                                                                                                                 
                                                                                                                                                                                  \-1 + x / *(-2 + x)                                                                                                                                                                                  
12x2(x2+2x(x2)1)(x21)212x(3x2)x21+2x(2xx21+1x2)(x2+2x(x2)1)x21+8x(x2+2x(x2)1)(x2)(x21)2(3x2)(2xx21+1x2)+2(x2+2x(x2)1)(4x2(x21)2+2x(x2)(x21)1x21+1(x2)2)+62(x2+2x(x2)1)x216(3x2)x2+(2xx21+1x2)(x2+2x(x2)1)x2+3(x2+2x(x2)1)(x2)2(x2)2(x21)2- \frac{\frac{12 x^{2} \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x^{2} - 1\right)^{2}} - \frac{12 x \left(3 x - 2\right)}{x^{2} - 1} + \frac{2 x \left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x^{2} - 1} + \frac{8 x \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x - 2\right) \left(x^{2} - 1\right)} - 2 \cdot \left(3 x - 2\right) \left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) + 2 \left(x^{2} + 2 x \left(x - 2\right) - 1\right) \left(\frac{4 x^{2}}{\left(x^{2} - 1\right)^{2}} + \frac{2 x}{\left(x - 2\right) \left(x^{2} - 1\right)} - \frac{1}{x^{2} - 1} + \frac{1}{\left(x - 2\right)^{2}}\right) + 6 - \frac{2 \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x^{2} - 1} - \frac{6 \cdot \left(3 x - 2\right)}{x - 2} + \frac{\left(\frac{2 x}{x^{2} - 1} + \frac{1}{x - 2}\right) \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{x - 2} + \frac{3 \left(x^{2} + 2 x \left(x - 2\right) - 1\right)}{\left(x - 2\right)^{2}}}{\left(x - 2\right)^{2} \left(x^{2} - 1\right)^{2}}
The graph
Derivative of 1/((x-2)*(x^2-1))