log(x) ------ tan(x)
log(x)/tan(x)
Apply the quotient rule, which is:
and .
To find :
The derivative of is .
To find :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \ 1 \-1 - tan (x)/*log(x) -------- + --------------------- x*tan(x) 2 tan (x)
/ 2 \ / 2 \ 1 2*\1 + tan (x)/ / 2 \ | 1 + tan (x)| - -- - --------------- + 2*\1 + tan (x)/*|-1 + -----------|*log(x) 2 x*tan(x) | 2 | x \ tan (x) / ------------------------------------------------------------------ tan(x)
/ 2 \ / 2 \ | 1 + tan (x)| / 2 3\ 6*\1 + tan (x)/*|-1 + -----------| | / 2 \ / 2 \ | / 2 \ | 2 | | 2 5*\1 + tan (x)/ 3*\1 + tan (x)/ | 2 3*\1 + tan (x)/ \ tan (x) / - 2*|2 + 2*tan (x) - ---------------- + ----------------|*log(x) + --------- + --------------- + ---------------------------------- | 2 4 | 3 2 2 x*tan(x) \ tan (x) tan (x) / x *tan(x) x *tan (x)