Mister Exam

Derivative of 1/tgx*lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)
------
tan(x)
$$\frac{\log{\left(x \right)}}{\tan{\left(x \right)}}$$
log(x)/tan(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of is .

    To find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. The derivative of sine is cosine:

      To find :

      1. The derivative of cosine is negative sine:

      Now plug in to the quotient rule:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           /        2   \       
   1       \-1 - tan (x)/*log(x)
-------- + ---------------------
x*tan(x)             2          
                  tan (x)       
$$\frac{\left(- \tan^{2}{\left(x \right)} - 1\right) \log{\left(x \right)}}{\tan^{2}{\left(x \right)}} + \frac{1}{x \tan{\left(x \right)}}$$
The second derivative [src]
         /       2   \                   /            2   \       
  1    2*\1 + tan (x)/     /       2   \ |     1 + tan (x)|       
- -- - --------------- + 2*\1 + tan (x)/*|-1 + -----------|*log(x)
   2       x*tan(x)                      |          2     |       
  x                                      \       tan (x)  /       
------------------------------------------------------------------
                              tan(x)                              
$$\frac{2 \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right) \log{\left(x \right)} - \frac{2 \left(\tan^{2}{\left(x \right)} + 1\right)}{x \tan{\left(x \right)}} - \frac{1}{x^{2}}}{\tan{\left(x \right)}}$$
The third derivative [src]
                                                                                                                 /            2   \
                                                                                                   /       2   \ |     1 + tan (x)|
    /                               2                  3\                                        6*\1 + tan (x)/*|-1 + -----------|
    |                  /       2   \      /       2   \ |                        /       2   \                   |          2     |
    |         2      5*\1 + tan (x)/    3*\1 + tan (x)/ |              2       3*\1 + tan (x)/                   \       tan (x)  /
- 2*|2 + 2*tan (x) - ---------------- + ----------------|*log(x) + --------- + --------------- + ----------------------------------
    |                       2                  4        |           3              2    2                     x*tan(x)             
    \                    tan (x)            tan (x)     /          x *tan(x)      x *tan (x)                                       
$$- 2 \left(\frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)^{3}}{\tan^{4}{\left(x \right)}} - \frac{5 \left(\tan^{2}{\left(x \right)} + 1\right)^{2}}{\tan^{2}{\left(x \right)}} + 2 \tan^{2}{\left(x \right)} + 2\right) \log{\left(x \right)} + \frac{6 \left(\frac{\tan^{2}{\left(x \right)} + 1}{\tan^{2}{\left(x \right)}} - 1\right) \left(\tan^{2}{\left(x \right)} + 1\right)}{x \tan{\left(x \right)}} + \frac{3 \left(\tan^{2}{\left(x \right)} + 1\right)}{x^{2} \tan^{2}{\left(x \right)}} + \frac{2}{x^{3} \tan{\left(x \right)}}$$