Mister Exam

Other calculators:


1/sqrt(1-x)

Limit of the function 1/sqrt(1-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1    
 lim ---------
x->oo  _______
     \/ 1 - x 
$$\lim_{x \to \infty} \frac{1}{\sqrt{1 - x}}$$
Limit(1/(sqrt(1 - x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \frac{1}{\sqrt{1 - x}} = 0$$
$$\lim_{x \to 0^-} \frac{1}{\sqrt{1 - x}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{1}{\sqrt{1 - x}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{1}{\sqrt{1 - x}} = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{1}{\sqrt{1 - x}} = - \infty i$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{1}{\sqrt{1 - x}} = 0$$
More at x→-oo
The graph
Limit of the function 1/sqrt(1-x)