Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (2+sqrt(x)-sqrt(2))/x
Limit of -x+(-2+x)^4/(3+x)^4
Limit of (5+x^2-6*x)/(5-11*x+2*x^2)
Limit of (-1+log(x))/(-1+sqrt(-9+x))
Integral of d{x}
:
1/sqrt(1-x)
Derivative of
:
1/sqrt(1-x)
Graphing y =
:
1/sqrt(1-x)
Identical expressions
one /sqrt(one -x)
1 divide by square root of (1 minus x)
one divide by square root of (one minus x)
1/√(1-x)
1/sqrt1-x
1 divide by sqrt(1-x)
Similar expressions
1/sqrt(1+x)
1/sqrt(1-x^4)
Limit of the function
/
1/sqrt(1-x)
Limit of the function 1/sqrt(1-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
1 lim --------- x->oo _______ \/ 1 - x
lim
x
→
∞
1
1
−
x
\lim_{x \to \infty} \frac{1}{\sqrt{1 - x}}
x
→
∞
lim
1
−
x
1
Limit(1/(sqrt(1 - x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
5
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
1
1
−
x
=
0
\lim_{x \to \infty} \frac{1}{\sqrt{1 - x}} = 0
x
→
∞
lim
1
−
x
1
=
0
lim
x
→
0
−
1
1
−
x
=
1
\lim_{x \to 0^-} \frac{1}{\sqrt{1 - x}} = 1
x
→
0
−
lim
1
−
x
1
=
1
More at x→0 from the left
lim
x
→
0
+
1
1
−
x
=
1
\lim_{x \to 0^+} \frac{1}{\sqrt{1 - x}} = 1
x
→
0
+
lim
1
−
x
1
=
1
More at x→0 from the right
lim
x
→
1
−
1
1
−
x
=
∞
\lim_{x \to 1^-} \frac{1}{\sqrt{1 - x}} = \infty
x
→
1
−
lim
1
−
x
1
=
∞
More at x→1 from the left
lim
x
→
1
+
1
1
−
x
=
−
∞
i
\lim_{x \to 1^+} \frac{1}{\sqrt{1 - x}} = - \infty i
x
→
1
+
lim
1
−
x
1
=
−
∞
i
More at x→1 from the right
lim
x
→
−
∞
1
1
−
x
=
0
\lim_{x \to -\infty} \frac{1}{\sqrt{1 - x}} = 0
x
→
−
∞
lim
1
−
x
1
=
0
More at x→-oo
The graph