1
------------------
2
(sin(x) + cos(x))
1/((sin(x) + cos(x))^2)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of sine is cosine:
The derivative of cosine is negative sine:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
-(-2*sin(x) + 2*cos(x))
------------------------------------
2
(sin(x) + cos(x))*(sin(x) + cos(x))
/ 2\
| 3*(-cos(x) + sin(x)) |
2*|1 + ---------------------|
| 2 |
\ (cos(x) + sin(x)) /
-----------------------------
2
(cos(x) + sin(x))
/ 2\
| 3*(-cos(x) + sin(x)) |
8*|2 + ---------------------|*(-cos(x) + sin(x))
| 2 |
\ (cos(x) + sin(x)) /
------------------------------------------------
3
(cos(x) + sin(x))