______________ / 1 / ------------ \/ cos(2*x - 1)
sqrt(1/cos(2*x - 1))
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
______________
/ 1
/ ------------ *sin(2*x - 1)
\/ cos(2*x - 1)
-------------------------------
cos(2*x - 1)
_______________ / 2 \
/ 1 | 3*sin (-1 + 2*x)|
/ ------------- *|2 + ----------------|
\/ cos(-1 + 2*x) | 2 |
\ cos (-1 + 2*x) /
_______________ / 2 \
/ 1 | 15*sin (-1 + 2*x)|
/ ------------- *|14 + -----------------|*sin(-1 + 2*x)
\/ cos(-1 + 2*x) | 2 |
\ cos (-1 + 2*x) /
----------------------------------------------------------
cos(-1 + 2*x)