Mister Exam

Other calculators

Derivative of 9^(sin(7*x-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(7*x - 2)
9            
$$9^{\sin{\left(7 x - 2 \right)}}$$
9^sin(7*x - 2)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  3. Now simplify:


The answer is:

The graph
The first derivative [src]
   sin(7*x - 2)                    
7*9            *cos(7*x - 2)*log(9)
$$7 \cdot 9^{\sin{\left(7 x - 2 \right)}} \log{\left(9 \right)} \cos{\left(7 x - 2 \right)}$$
The second derivative [src]
    sin(-2 + 7*x) /                    2                 \       
49*9             *\-sin(-2 + 7*x) + cos (-2 + 7*x)*log(9)/*log(9)
$$49 \cdot 9^{\sin{\left(7 x - 2 \right)}} \left(- \sin{\left(7 x - 2 \right)} + \log{\left(9 \right)} \cos^{2}{\left(7 x - 2 \right)}\right) \log{\left(9 \right)}$$
The third derivative [src]
     sin(-2 + 7*x) /        2              2                            \                     
343*9             *\-1 + cos (-2 + 7*x)*log (9) - 3*log(9)*sin(-2 + 7*x)/*cos(-2 + 7*x)*log(9)
$$343 \cdot 9^{\sin{\left(7 x - 2 \right)}} \left(- 3 \log{\left(9 \right)} \sin{\left(7 x - 2 \right)} + \log{\left(9 \right)}^{2} \cos^{2}{\left(7 x - 2 \right)} - 1\right) \log{\left(9 \right)} \cos{\left(7 x - 2 \right)}$$