Mister Exam

Other calculators

Derivative of 9^(sin(7*x-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(7*x - 2)
9            
9sin(7x2)9^{\sin{\left(7 x - 2 \right)}}
9^sin(7*x - 2)
Detail solution
  1. Let u=sin(7x2)u = \sin{\left(7 x - 2 \right)}.

  2. ddu9u=9ulog(9)\frac{d}{d u} 9^{u} = 9^{u} \log{\left(9 \right)}

  3. Then, apply the chain rule. Multiply by ddxsin(7x2)\frac{d}{d x} \sin{\left(7 x - 2 \right)}:

    1. Let u=7x2u = 7 x - 2.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(7x2)\frac{d}{d x} \left(7 x - 2\right):

      1. Differentiate 7x27 x - 2 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 77

        2. The derivative of the constant 2-2 is zero.

        The result is: 77

      The result of the chain rule is:

      7cos(7x2)7 \cos{\left(7 x - 2 \right)}

    The result of the chain rule is:

    79sin(7x2)log(9)cos(7x2)7 \cdot 9^{\sin{\left(7 x - 2 \right)}} \log{\left(9 \right)} \cos{\left(7 x - 2 \right)}

  4. Now simplify:

    149sin(7x2)log(3)cos(7x2)14 \cdot 9^{\sin{\left(7 x - 2 \right)}} \log{\left(3 \right)} \cos{\left(7 x - 2 \right)}


The answer is:

149sin(7x2)log(3)cos(7x2)14 \cdot 9^{\sin{\left(7 x - 2 \right)}} \log{\left(3 \right)} \cos{\left(7 x - 2 \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
   sin(7*x - 2)                    
7*9            *cos(7*x - 2)*log(9)
79sin(7x2)log(9)cos(7x2)7 \cdot 9^{\sin{\left(7 x - 2 \right)}} \log{\left(9 \right)} \cos{\left(7 x - 2 \right)}
The second derivative [src]
    sin(-2 + 7*x) /                    2                 \       
49*9             *\-sin(-2 + 7*x) + cos (-2 + 7*x)*log(9)/*log(9)
499sin(7x2)(sin(7x2)+log(9)cos2(7x2))log(9)49 \cdot 9^{\sin{\left(7 x - 2 \right)}} \left(- \sin{\left(7 x - 2 \right)} + \log{\left(9 \right)} \cos^{2}{\left(7 x - 2 \right)}\right) \log{\left(9 \right)}
The third derivative [src]
     sin(-2 + 7*x) /        2              2                            \                     
343*9             *\-1 + cos (-2 + 7*x)*log (9) - 3*log(9)*sin(-2 + 7*x)/*cos(-2 + 7*x)*log(9)
3439sin(7x2)(3log(9)sin(7x2)+log(9)2cos2(7x2)1)log(9)cos(7x2)343 \cdot 9^{\sin{\left(7 x - 2 \right)}} \left(- 3 \log{\left(9 \right)} \sin{\left(7 x - 2 \right)} + \log{\left(9 \right)}^{2} \cos^{2}{\left(7 x - 2 \right)} - 1\right) \log{\left(9 \right)} \cos{\left(7 x - 2 \right)}