Mister Exam

Derivative of -ln((1+x)/(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /1 + x\
-log|-----|
    \1 - x/
$$- \log{\left(\frac{x + 1}{1 - x} \right)}$$
-log((1 + x)/(1 - x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Apply the quotient rule, which is:

        and .

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. Apply the power rule: goes to

          The result is:

        To find :

        1. Differentiate term by term:

          1. The derivative of the constant is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result is:

        Now plug in to the quotient rule:

      The result of the chain rule is:

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         /  1      1 + x  \ 
-(1 - x)*|----- + --------| 
         |1 - x          2| 
         \        (1 - x) / 
----------------------------
           1 + x            
$$- \frac{\left(1 - x\right) \left(\frac{1}{1 - x} + \frac{x + 1}{\left(1 - x\right)^{2}}\right)}{x + 1}$$
The second derivative [src]
/    1 + x \ /  1       1   \
|1 - ------|*|----- + ------|
\    -1 + x/ \1 + x   -1 + x/
-----------------------------
            1 + x            
$$\frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{x + 1}$$
The third derivative [src]
   /    1 + x \ /   1           1              1        \
-2*|1 - ------|*|-------- + --------- + ----------------|
   \    -1 + x/ |       2           2   (1 + x)*(-1 + x)|
                \(1 + x)    (-1 + x)                    /
---------------------------------------------------------
                          1 + x                          
$$- \frac{2 \left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right)}{x + 1}$$