Mister Exam

Derivative of -ln((1+x)/(1-x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /1 + x\
-log|-----|
    \1 - x/
log(x+11x)- \log{\left(\frac{x + 1}{1 - x} \right)}
-log((1 + x)/(1 - x))
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=x+11xu = \frac{x + 1}{1 - x}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddxx+11x\frac{d}{d x} \frac{x + 1}{1 - x}:

      1. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=x+1f{\left(x \right)} = x + 1 and g(x)=1xg{\left(x \right)} = 1 - x.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Differentiate x+1x + 1 term by term:

          1. The derivative of the constant 11 is zero.

          2. Apply the power rule: xx goes to 11

          The result is: 11

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Differentiate 1x1 - x term by term:

          1. The derivative of the constant 11 is zero.

          2. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 1-1

          The result is: 1-1

        Now plug in to the quotient rule:

        2(1x)2\frac{2}{\left(1 - x\right)^{2}}

      The result of the chain rule is:

      2(1x)(x+1)\frac{2}{\left(1 - x\right) \left(x + 1\right)}

    So, the result is: 2(1x)(x+1)- \frac{2}{\left(1 - x\right) \left(x + 1\right)}

  2. Now simplify:

    2x21\frac{2}{x^{2} - 1}


The answer is:

2x21\frac{2}{x^{2} - 1}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
         /  1      1 + x  \ 
-(1 - x)*|----- + --------| 
         |1 - x          2| 
         \        (1 - x) / 
----------------------------
           1 + x            
(1x)(11x+x+1(1x)2)x+1- \frac{\left(1 - x\right) \left(\frac{1}{1 - x} + \frac{x + 1}{\left(1 - x\right)^{2}}\right)}{x + 1}
The second derivative [src]
/    1 + x \ /  1       1   \
|1 - ------|*|----- + ------|
\    -1 + x/ \1 + x   -1 + x/
-----------------------------
            1 + x            
(1x+1x1)(1x+1+1x1)x+1\frac{\left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{x + 1}
The third derivative [src]
   /    1 + x \ /   1           1              1        \
-2*|1 - ------|*|-------- + --------- + ----------------|
   \    -1 + x/ |       2           2   (1 + x)*(-1 + x)|
                \(1 + x)    (-1 + x)                    /
---------------------------------------------------------
                          1 + x                          
2(1x+1x1)(1(x+1)2+1(x1)(x+1)+1(x1)2)x+1- \frac{2 \left(1 - \frac{x + 1}{x - 1}\right) \left(\frac{1}{\left(x + 1\right)^{2}} + \frac{1}{\left(x - 1\right) \left(x + 1\right)} + \frac{1}{\left(x - 1\right)^{2}}\right)}{x + 1}