Mister Exam

Other calculators

Derivative of -ctg(28x)/104

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-cot(28*x) 
-----------
    104    
(1)cot(28x)104\frac{\left(-1\right) \cot{\left(28 x \right)}}{104}
(-cot(28*x))/104
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

          cot(28x)=1tan(28x)\cot{\left(28 x \right)} = \frac{1}{\tan{\left(28 x \right)}}

        2. Let u=tan(28x)u = \tan{\left(28 x \right)}.

        3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

        4. Then, apply the chain rule. Multiply by ddxtan(28x)\frac{d}{d x} \tan{\left(28 x \right)}:

          1. Rewrite the function to be differentiated:

            tan(28x)=sin(28x)cos(28x)\tan{\left(28 x \right)} = \frac{\sin{\left(28 x \right)}}{\cos{\left(28 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=sin(28x)f{\left(x \right)} = \sin{\left(28 x \right)} and g(x)=cos(28x)g{\left(x \right)} = \cos{\left(28 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=28xu = 28 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx28x\frac{d}{d x} 28 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 2828

              The result of the chain rule is:

              28cos(28x)28 \cos{\left(28 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=28xu = 28 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx28x\frac{d}{d x} 28 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 2828

              The result of the chain rule is:

              28sin(28x)- 28 \sin{\left(28 x \right)}

            Now plug in to the quotient rule:

            28sin2(28x)+28cos2(28x)cos2(28x)\frac{28 \sin^{2}{\left(28 x \right)} + 28 \cos^{2}{\left(28 x \right)}}{\cos^{2}{\left(28 x \right)}}

          The result of the chain rule is:

          28sin2(28x)+28cos2(28x)cos2(28x)tan2(28x)- \frac{28 \sin^{2}{\left(28 x \right)} + 28 \cos^{2}{\left(28 x \right)}}{\cos^{2}{\left(28 x \right)} \tan^{2}{\left(28 x \right)}}

        Method #2

        1. Rewrite the function to be differentiated:

          cot(28x)=cos(28x)sin(28x)\cot{\left(28 x \right)} = \frac{\cos{\left(28 x \right)}}{\sin{\left(28 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=cos(28x)f{\left(x \right)} = \cos{\left(28 x \right)} and g(x)=sin(28x)g{\left(x \right)} = \sin{\left(28 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=28xu = 28 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx28x\frac{d}{d x} 28 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 2828

            The result of the chain rule is:

            28sin(28x)- 28 \sin{\left(28 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=28xu = 28 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx28x\frac{d}{d x} 28 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 2828

            The result of the chain rule is:

            28cos(28x)28 \cos{\left(28 x \right)}

          Now plug in to the quotient rule:

          28sin2(28x)28cos2(28x)sin2(28x)\frac{- 28 \sin^{2}{\left(28 x \right)} - 28 \cos^{2}{\left(28 x \right)}}{\sin^{2}{\left(28 x \right)}}

      So, the result is: 28sin2(28x)+28cos2(28x)cos2(28x)tan2(28x)\frac{28 \sin^{2}{\left(28 x \right)} + 28 \cos^{2}{\left(28 x \right)}}{\cos^{2}{\left(28 x \right)} \tan^{2}{\left(28 x \right)}}

    So, the result is: 28sin2(28x)+28cos2(28x)104cos2(28x)tan2(28x)\frac{28 \sin^{2}{\left(28 x \right)} + 28 \cos^{2}{\left(28 x \right)}}{104 \cos^{2}{\left(28 x \right)} \tan^{2}{\left(28 x \right)}}

  2. Now simplify:

    726sin2(28x)\frac{7}{26 \sin^{2}{\left(28 x \right)}}


The answer is:

726sin2(28x)\frac{7}{26 \sin^{2}{\left(28 x \right)}}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
          2      
7    7*cot (28*x)
-- + ------------
26        26     
7cot2(28x)26+726\frac{7 \cot^{2}{\left(28 x \right)}}{26} + \frac{7}{26}
The second derivative [src]
     /       2      \          
-196*\1 + cot (28*x)/*cot(28*x)
-------------------------------
               13              
196(cot2(28x)+1)cot(28x)13- \frac{196 \left(\cot^{2}{\left(28 x \right)} + 1\right) \cot{\left(28 x \right)}}{13}
The third derivative [src]
     /       2      \ /         2      \
5488*\1 + cot (28*x)/*\1 + 3*cot (28*x)/
----------------------------------------
                   13                   
5488(cot2(28x)+1)(3cot2(28x)+1)13\frac{5488 \left(\cot^{2}{\left(28 x \right)} + 1\right) \left(3 \cot^{2}{\left(28 x \right)} + 1\right)}{13}