Mister Exam

Derivative of -4sin(2x)-cos(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
-4*sin(2*x) - cos(x + 1)
4sin(2x)cos(x+1)- 4 \sin{\left(2 x \right)} - \cos{\left(x + 1 \right)}
-4*sin(2*x) - cos(x + 1)
Detail solution
  1. Differentiate 4sin(2x)cos(x+1)- 4 \sin{\left(2 x \right)} - \cos{\left(x + 1 \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      So, the result is: 8cos(2x)- 8 \cos{\left(2 x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=x+1u = x + 1.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

        1. Differentiate x+1x + 1 term by term:

          1. Apply the power rule: xx goes to 11

          2. The derivative of the constant 11 is zero.

          The result is: 11

        The result of the chain rule is:

        sin(x+1)- \sin{\left(x + 1 \right)}

      So, the result is: sin(x+1)\sin{\left(x + 1 \right)}

    The result is: sin(x+1)8cos(2x)\sin{\left(x + 1 \right)} - 8 \cos{\left(2 x \right)}

  2. Now simplify:

    sin(x+1)8cos(2x)\sin{\left(x + 1 \right)} - 8 \cos{\left(2 x \right)}


The answer is:

sin(x+1)8cos(2x)\sin{\left(x + 1 \right)} - 8 \cos{\left(2 x \right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
-8*cos(2*x) + sin(x + 1)
sin(x+1)8cos(2x)\sin{\left(x + 1 \right)} - 8 \cos{\left(2 x \right)}
The second derivative [src]
16*sin(2*x) + cos(1 + x)
16sin(2x)+cos(x+1)16 \sin{\left(2 x \right)} + \cos{\left(x + 1 \right)}
The third derivative [src]
-sin(1 + x) + 32*cos(2*x)
sin(x+1)+32cos(2x)- \sin{\left(x + 1 \right)} + 32 \cos{\left(2 x \right)}