Mister Exam

Other calculators

Derivative of log((2*x-1)/(x+2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /2*x - 1\
log|-------|
   \ x + 2 /
$$\log{\left(\frac{2 x - 1}{x + 2} \right)}$$
log((2*x - 1)/(x + 2))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
        /  2     2*x - 1 \
(x + 2)*|----- - --------|
        |x + 2          2|
        \        (x + 2) /
--------------------------
         2*x - 1          
$$\frac{\left(x + 2\right) \left(\frac{2}{x + 2} - \frac{2 x - 1}{\left(x + 2\right)^{2}}\right)}{2 x - 1}$$
The second derivative [src]
/    -1 + 2*x\ /    1        2    \
|2 - --------|*|- ----- - --------|
\     2 + x  / \  2 + x   -1 + 2*x/
-----------------------------------
              -1 + 2*x             
$$\frac{\left(2 - \frac{2 x - 1}{x + 2}\right) \left(- \frac{2}{2 x - 1} - \frac{1}{x + 2}\right)}{2 x - 1}$$
The third derivative [src]
  /    -1 + 2*x\ /   1            4                2         \
2*|2 - --------|*|-------- + ----------- + ------------------|
  \     2 + x  / |       2             2   (-1 + 2*x)*(2 + x)|
                 \(2 + x)    (-1 + 2*x)                      /
--------------------------------------------------------------
                           -1 + 2*x                           
$$\frac{2 \left(2 - \frac{2 x - 1}{x + 2}\right) \left(\frac{4}{\left(2 x - 1\right)^{2}} + \frac{2}{\left(x + 2\right) \left(2 x - 1\right)} + \frac{1}{\left(x + 2\right)^{2}}\right)}{2 x - 1}$$