/ 2 \ log\sin (x) + 1/
log(sin(x)^2 + 1)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2*cos(x)*sin(x)
---------------
2
sin (x) + 1
/ 2 2 \
| 2 2 2*cos (x)*sin (x)|
2*|cos (x) - sin (x) - -----------------|
| 2 |
\ 1 + sin (x) /
-----------------------------------------
2
1 + sin (x)
/ 2 2 2 2 \
| 3*cos (x) 3*sin (x) 4*cos (x)*sin (x)|
4*|-2 - ----------- + ----------- + -----------------|*cos(x)*sin(x)
| 2 2 2 |
| 1 + sin (x) 1 + sin (x) / 2 \ |
\ \1 + sin (x)/ /
--------------------------------------------------------------------
2
1 + sin (x)