Mister Exam

Other calculators

Derivative of log(log(x)+1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /         1\
log|log(x) + -|
   \         x/
$$\log{\left(\log{\left(x \right)} + \frac{1}{x} \right)}$$
log(log(x) + 1/x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of is .

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  1   1   
  - - --  
  x    2  
      x   
----------
         1
log(x) + -
         x
$$\frac{\frac{1}{x} - \frac{1}{x^{2}}}{\log{\left(x \right)} + \frac{1}{x}}$$
The second derivative [src]
 /                2 \ 
 |         /    1\  | 
 |         |1 - -|  | 
 |    2    \    x/  | 
-|1 - - + ----------| 
 |    x   1         | 
 |        - + log(x)| 
 \        x         / 
----------------------
    2 /1         \    
   x *|- + log(x)|    
      \x         /    
$$- \frac{\frac{\left(1 - \frac{1}{x}\right)^{2}}{\log{\left(x \right)} + \frac{1}{x}} + 1 - \frac{2}{x}}{x^{2} \left(\log{\left(x \right)} + \frac{1}{x}\right)}$$
The third derivative [src]
                   3                     
            /    1\       /    1\ /    2\
          2*|1 - -|     3*|1 - -|*|1 - -|
    6       \    x/       \    x/ \    x/
2 - - + ------------- + -----------------
    x               2       1            
        /1         \        - + log(x)   
        |- + log(x)|        x            
        \x         /                     
-----------------------------------------
              3 /1         \             
             x *|- + log(x)|             
                \x         /             
$$\frac{\frac{3 \left(1 - \frac{2}{x}\right) \left(1 - \frac{1}{x}\right)}{\log{\left(x \right)} + \frac{1}{x}} + \frac{2 \left(1 - \frac{1}{x}\right)^{3}}{\left(\log{\left(x \right)} + \frac{1}{x}\right)^{2}} + 2 - \frac{6}{x}}{x^{3} \left(\log{\left(x \right)} + \frac{1}{x}\right)}$$