/ 1\ log|log(x) + -| \ x/
log(log(x) + 1/x)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of is .
Apply the power rule: goes to
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1
- - --
x 2
x
----------
1
log(x) + -
x
/ 2 \
| / 1\ |
| |1 - -| |
| 2 \ x/ |
-|1 - - + ----------|
| x 1 |
| - + log(x)|
\ x /
----------------------
2 /1 \
x *|- + log(x)|
\x /
3
/ 1\ / 1\ / 2\
2*|1 - -| 3*|1 - -|*|1 - -|
6 \ x/ \ x/ \ x/
2 - - + ------------- + -----------------
x 2 1
/1 \ - + log(x)
|- + log(x)| x
\x /
-----------------------------------------
3 /1 \
x *|- + log(x)|
\x /