Mister Exam

Other calculators

Derivative of log(5)^(3x+1)^10

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /         10\
        \(3*x + 1)  /
(log(5))             
$$\log{\left(5 \right)}^{\left(3 x + 1\right)^{10}}$$
log(5)^((3*x + 1)^10)
The first derivative [src]
                      /         10\            
            9         \(3*x + 1)  /            
30*(3*x + 1) *(log(5))             *log(log(5))
$$30 \left(3 x + 1\right)^{9} \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$
The second derivative [src]
                      /         10\                                             
            8         \(1 + 3*x)  / /                10            \            
90*(1 + 3*x) *(log(5))             *\9 + 10*(1 + 3*x)  *log(log(5))/*log(log(5))
$$90 \left(3 x + 1\right)^{8} \left(10 \left(3 x + 1\right)^{10} \log{\left(\log{\left(5 \right)} \right)} + 9\right) \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$
The third derivative [src]
                       /         10\                                                                             
             7         \(1 + 3*x)  / /                 20    2                        10            \            
540*(1 + 3*x) *(log(5))             *\36 + 50*(1 + 3*x)  *log (log(5)) + 135*(1 + 3*x)  *log(log(5))/*log(log(5))
$$540 \left(3 x + 1\right)^{7} \left(50 \left(3 x + 1\right)^{20} \log{\left(\log{\left(5 \right)} \right)}^{2} + 135 \left(3 x + 1\right)^{10} \log{\left(\log{\left(5 \right)} \right)} + 36\right) \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$