The first derivative
[src]
/ 10\
9 \(3*x + 1) /
30*(3*x + 1) *(log(5)) *log(log(5))
$$30 \left(3 x + 1\right)^{9} \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$
The second derivative
[src]
/ 10\
8 \(1 + 3*x) / / 10 \
90*(1 + 3*x) *(log(5)) *\9 + 10*(1 + 3*x) *log(log(5))/*log(log(5))
$$90 \left(3 x + 1\right)^{8} \left(10 \left(3 x + 1\right)^{10} \log{\left(\log{\left(5 \right)} \right)} + 9\right) \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$
The third derivative
[src]
/ 10\
7 \(1 + 3*x) / / 20 2 10 \
540*(1 + 3*x) *(log(5)) *\36 + 50*(1 + 3*x) *log (log(5)) + 135*(1 + 3*x) *log(log(5))/*log(log(5))
$$540 \left(3 x + 1\right)^{7} \left(50 \left(3 x + 1\right)^{20} \log{\left(\log{\left(5 \right)} \right)}^{2} + 135 \left(3 x + 1\right)^{10} \log{\left(\log{\left(5 \right)} \right)} + 36\right) \log{\left(5 \right)}^{\left(3 x + 1\right)^{10}} \log{\left(\log{\left(5 \right)} \right)}$$