The first derivative
[src]
-1
----------------
/ 2\
\1 + x /*acot(x)
$$- \frac{1}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}}$$
The second derivative
[src]
1
- ------- + 2*x
acot(x)
-----------------
2
/ 2\
\1 + x / *acot(x)
$$\frac{2 x - \frac{1}{\operatorname{acot}{\left(x \right)}}}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left(x \right)}}$$
The third derivative
[src]
/ 2 \
| 1 4*x 3*x |
2*|1 - ----------------- - ------ + ----------------|
| / 2\ 2 2 / 2\ |
\ \1 + x /*acot (x) 1 + x \1 + x /*acot(x)/
-----------------------------------------------------
2
/ 2\
\1 + x / *acot(x)
$$\frac{2 \left(- \frac{4 x^{2}}{x^{2} + 1} + 1 + \frac{3 x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \frac{1}{\left(x^{2} + 1\right) \operatorname{acot}^{2}{\left(x \right)}}\right)}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left(x \right)}}$$