Mister Exam

Derivative of log(acot(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(acot(x))
$$\log{\left(\operatorname{acot}{\left(x \right)} \right)}$$
d               
--(log(acot(x)))
dx              
$$\frac{d}{d x} \log{\left(\operatorname{acot}{\left(x \right)} \right)}$$
The graph
The first derivative [src]
      -1        
----------------
/     2\        
\1 + x /*acot(x)
$$- \frac{1}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}}$$
The second derivative [src]
      1          
 - ------- + 2*x 
   acot(x)       
-----------------
        2        
/     2\         
\1 + x / *acot(x)
$$\frac{2 x - \frac{1}{\operatorname{acot}{\left(x \right)}}}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left(x \right)}}$$
The third derivative [src]
  /                            2                    \
  |            1            4*x           3*x       |
2*|1 - ----------------- - ------ + ----------------|
  |    /     2\     2           2   /     2\        |
  \    \1 + x /*acot (x)   1 + x    \1 + x /*acot(x)/
-----------------------------------------------------
                          2                          
                  /     2\                           
                  \1 + x / *acot(x)                  
$$\frac{2 \left(- \frac{4 x^{2}}{x^{2} + 1} + 1 + \frac{3 x}{\left(x^{2} + 1\right) \operatorname{acot}{\left(x \right)}} - \frac{1}{\left(x^{2} + 1\right) \operatorname{acot}^{2}{\left(x \right)}}\right)}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left(x \right)}}$$
The graph
Derivative of log(acot(x))