Mister Exam

Derivative of log(√(12x))^⅓

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _______________
3 /    /  ______\ 
\/  log\\/ 12*x / 
log(12x)3\sqrt[3]{\log{\left(\sqrt{12 x} \right)}}
log(sqrt(12*x))^(1/3)
Detail solution
  1. Let u=log(12x)u = \log{\left(\sqrt{12 x} \right)}.

  2. Apply the power rule: u3\sqrt[3]{u} goes to 13u23\frac{1}{3 u^{\frac{2}{3}}}

  3. Then, apply the chain rule. Multiply by ddxlog(12x)\frac{d}{d x} \log{\left(\sqrt{12 x} \right)}:

    1. Let u=12xu = \sqrt{12 x}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} \sqrt{12 x}:

      1. Let u=12xu = 12 x.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx12x\frac{d}{d x} 12 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 1212

        The result of the chain rule is:

        3x\frac{\sqrt{3}}{\sqrt{x}}

      The result of the chain rule is:

      12x\frac{1}{2 x}

    The result of the chain rule is:

    16xlog(12x)23\frac{1}{6 x \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}

  4. Now simplify:

    16x(log(x)2+log(3)2+log(2))23\frac{1}{6 x \left(\frac{\log{\left(x \right)}}{2} + \frac{\log{\left(3 \right)}}{2} + \log{\left(2 \right)}\right)^{\frac{2}{3}}}


The answer is:

16x(log(x)2+log(3)2+log(2))23\frac{1}{6 x \left(\frac{\log{\left(x \right)}}{2} + \frac{\log{\left(3 \right)}}{2} + \log{\left(2 \right)}\right)^{\frac{2}{3}}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
         1          
--------------------
       2/3/  ______\
6*x*log   \\/ 12*x /
16xlog(12x)23\frac{1}{6 x \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}
The second derivative [src]
 /          1      \  
-|3 + -------------|  
 |       /  ______\|  
 \    log\\/ 12*x //  
----------------------
    2    2/3/  ______\
18*x *log   \\/ 12*x /
3+1log(12x)18x2log(12x)23- \frac{3 + \frac{1}{\log{\left(\sqrt{12 x} \right)}}}{18 x^{2} \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}
The third derivative [src]
           5                18     
36 + -------------- + -------------
        2/  ______\      /  ______\
     log \\/ 12*x /   log\\/ 12*x /
-----------------------------------
           3    2/3/  ______\      
      108*x *log   \\/ 12*x /      
36+18log(12x)+5log(12x)2108x3log(12x)23\frac{36 + \frac{18}{\log{\left(\sqrt{12 x} \right)}} + \frac{5}{\log{\left(\sqrt{12 x} \right)}^{2}}}{108 x^{3} \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}