Mister Exam

Derivative of log(√(12x))^⅓

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _______________
3 /    /  ______\ 
\/  log\\/ 12*x / 
$$\sqrt[3]{\log{\left(\sqrt{12 x} \right)}}$$
log(sqrt(12*x))^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
         1          
--------------------
       2/3/  ______\
6*x*log   \\/ 12*x /
$$\frac{1}{6 x \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}$$
The second derivative [src]
 /          1      \  
-|3 + -------------|  
 |       /  ______\|  
 \    log\\/ 12*x //  
----------------------
    2    2/3/  ______\
18*x *log   \\/ 12*x /
$$- \frac{3 + \frac{1}{\log{\left(\sqrt{12 x} \right)}}}{18 x^{2} \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}$$
The third derivative [src]
           5                18     
36 + -------------- + -------------
        2/  ______\      /  ______\
     log \\/ 12*x /   log\\/ 12*x /
-----------------------------------
           3    2/3/  ______\      
      108*x *log   \\/ 12*x /      
$$\frac{36 + \frac{18}{\log{\left(\sqrt{12 x} \right)}} + \frac{5}{\log{\left(\sqrt{12 x} \right)}^{2}}}{108 x^{3} \log{\left(\sqrt{12 x} \right)}^{\frac{2}{3}}}$$