Mister Exam

Derivative of ln((x-1)/(x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x - 1\
log|-----|
   \x + 1/
log(x1x+1)\log{\left(\frac{x - 1}{x + 1} \right)}
log((x - 1)/(x + 1))
Detail solution
  1. Let u=x1x+1u = \frac{x - 1}{x + 1}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxx1x+1\frac{d}{d x} \frac{x - 1}{x + 1}:

    1. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=x1f{\left(x \right)} = x - 1 and g(x)=x+1g{\left(x \right)} = x + 1.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Differentiate x1x - 1 term by term:

        1. The derivative of the constant 1-1 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      Now plug in to the quotient rule:

      2(x+1)2\frac{2}{\left(x + 1\right)^{2}}

    The result of the chain rule is:

    2(x+1)(x1)(x+1)2\frac{2 \left(x + 1\right)}{\left(x - 1\right) \left(x + 1\right)^{2}}

  4. Now simplify:

    2x21\frac{2}{x^{2} - 1}


The answer is:

2x21\frac{2}{x^{2} - 1}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
        /  1      x - 1  \
(x + 1)*|----- - --------|
        |x + 1          2|
        \        (x + 1) /
--------------------------
          x - 1           
(x+1)(x1(x+1)2+1x+1)x1\frac{\left(x + 1\right) \left(- \frac{x - 1}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}\right)}{x - 1}
The second derivative [src]
/     -1 + x\ /  1       1   \
|-1 + ------|*|----- + ------|
\     1 + x / \1 + x   -1 + x/
------------------------------
            -1 + x            
(x1x+11)(1x+1+1x1)x1\frac{\left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{1}{x + 1} + \frac{1}{x - 1}\right)}{x - 1}
The third derivative [src]
  /     -1 + x\ /     1           1              1        \
2*|-1 + ------|*|- -------- - --------- - ----------------|
  \     1 + x / |         2           2   (1 + x)*(-1 + x)|
                \  (1 + x)    (-1 + x)                    /
-----------------------------------------------------------
                           -1 + x                          
2(x1x+11)(1(x+1)21(x1)(x+1)1(x1)2)x1\frac{2 \left(\frac{x - 1}{x + 1} - 1\right) \left(- \frac{1}{\left(x + 1\right)^{2}} - \frac{1}{\left(x - 1\right) \left(x + 1\right)} - \frac{1}{\left(x - 1\right)^{2}}\right)}{x - 1}
The graph
Derivative of ln((x-1)/(x+1))