Mister Exam

Derivative of y=ln(x-1/x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    1    \
log|x - - + 1|
   \    x    /
$$\log{\left(\left(x - \frac{1}{x}\right) + 1 \right)}$$
log(x - 1/x + 1)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      2. The derivative of the constant is zero.

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
      1  
  1 + -- 
       2 
      x  
---------
    1    
x - - + 1
    x    
$$\frac{1 + \frac{1}{x^{2}}}{\left(x - \frac{1}{x}\right) + 1}$$
The second derivative [src]
 /             2\ 
 |     /    1 \ | 
 |     |1 + --| | 
 |     |     2| | 
 |2    \    x / | 
-|-- + ---------| 
 | 3           1| 
 |x    1 + x - -| 
 \             x/ 
------------------
            1     
    1 + x - -     
            x     
$$- \frac{\frac{\left(1 + \frac{1}{x^{2}}\right)^{2}}{x + 1 - \frac{1}{x}} + \frac{2}{x^{3}}}{x + 1 - \frac{1}{x}}$$
The third derivative [src]
  /              3                   \
  |      /    1 \          /    1 \  |
  |      |1 + --|        3*|1 + --|  |
  |      |     2|          |     2|  |
  |3     \    x /          \    x /  |
2*|-- + ------------ + --------------|
  | 4              2    3 /        1\|
  |x    /        1\    x *|1 + x - -||
  |     |1 + x - -|       \        x/|
  \     \        x/                  /
--------------------------------------
                      1               
              1 + x - -               
                      x               
$$\frac{2 \left(\frac{\left(1 + \frac{1}{x^{2}}\right)^{3}}{\left(x + 1 - \frac{1}{x}\right)^{2}} + \frac{3 \left(1 + \frac{1}{x^{2}}\right)}{x^{3} \left(x + 1 - \frac{1}{x}\right)} + \frac{3}{x^{4}}\right)}{x + 1 - \frac{1}{x}}$$
The graph
Derivative of y=ln(x-1/x+1)