/ 1 \ log|x - - + 1| \ x /
log(x - 1/x + 1)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1 + -- 2 x --------- 1 x - - + 1 x
/ 2\ | / 1 \ | | |1 + --| | | | 2| | |2 \ x / | -|-- + ---------| | 3 1| |x 1 + x - -| \ x/ ------------------ 1 1 + x - - x
/ 3 \ | / 1 \ / 1 \ | | |1 + --| 3*|1 + --| | | | 2| | 2| | |3 \ x / \ x / | 2*|-- + ------------ + --------------| | 4 2 3 / 1\| |x / 1\ x *|1 + x - -|| | |1 + x - -| \ x/| \ \ x/ / -------------------------------------- 1 1 + x - - x