/ 1 \ log|x - - + 1| \ x /
log(x - 1/x + 1)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Differentiate term by term:
Apply the power rule: goes to
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1
1 + --
2
x
---------
1
x - - + 1
x
/ 2\
| / 1 \ |
| |1 + --| |
| | 2| |
|2 \ x / |
-|-- + ---------|
| 3 1|
|x 1 + x - -|
\ x/
------------------
1
1 + x - -
x
/ 3 \
| / 1 \ / 1 \ |
| |1 + --| 3*|1 + --| |
| | 2| | 2| |
|3 \ x / \ x / |
2*|-- + ------------ + --------------|
| 4 2 3 / 1\|
|x / 1\ x *|1 + x - -||
| |1 + x - -| \ x/|
\ \ x/ /
--------------------------------------
1
1 + x - -
x