Mister Exam

Other calculators


ln((x-1)/(x+1))

Integral of ln((x-1)/(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |     /x - 1\   
 |  log|-----| dx
 |     \x + 1/   
 |               
/                
0                
$$\int\limits_{0}^{1} \log{\left(\frac{x - 1}{x + 1} \right)}\, dx$$
Integral(log((x - 1)/(x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                           
 |                                                            
 |    /x - 1\                                          /x - 1\
 | log|-----| dx = C - log(1 + x) - log(-1 + x) + x*log|-----|
 |    \x + 1/                                          \x + 1/
 |                                                            
/                                                             
$$\int \log{\left(\frac{x - 1}{x + 1} \right)}\, dx = C + x \log{\left(\frac{x - 1}{x + 1} \right)} - \log{\left(x - 1 \right)} - \log{\left(x + 1 \right)}$$
The graph
The answer [src]
-2*log(2) + pi*I
$$- 2 \log{\left(2 \right)} + i \pi$$
=
=
-2*log(2) + pi*I
$$- 2 \log{\left(2 \right)} + i \pi$$
-2*log(2) + pi*i
Numerical answer [src]
(-1.38629436111989 + 3.14159265358979j)
(-1.38629436111989 + 3.14159265358979j)
The graph
Integral of ln((x-1)/(x+1)) dx

    Use the examples entering the upper and lower limits of integration.