Mister Exam

Derivative of ln(x²+x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   / 2        \
log\x  + x - 1/
log((x2+x)1)\log{\left(\left(x^{2} + x\right) - 1 \right)}
log(x^2 + x - 1)
Detail solution
  1. Let u=(x2+x)1u = \left(x^{2} + x\right) - 1.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddx((x2+x)1)\frac{d}{d x} \left(\left(x^{2} + x\right) - 1\right):

    1. Differentiate (x2+x)1\left(x^{2} + x\right) - 1 term by term:

      1. Differentiate x2+xx^{2} + x term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. Apply the power rule: xx goes to 11

        The result is: 2x+12 x + 1

      2. The derivative of the constant 1-1 is zero.

      The result is: 2x+12 x + 1

    The result of the chain rule is:

    2x+1(x2+x)1\frac{2 x + 1}{\left(x^{2} + x\right) - 1}

  4. Now simplify:

    2x+1x2+x1\frac{2 x + 1}{x^{2} + x - 1}


The answer is:

2x+1x2+x1\frac{2 x + 1}{x^{2} + x - 1}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
 1 + 2*x  
----------
 2        
x  + x - 1
2x+1(x2+x)1\frac{2 x + 1}{\left(x^{2} + x\right) - 1}
The second derivative [src]
              2
     (1 + 2*x) 
2 - -----------
              2
    -1 + x + x 
---------------
            2  
  -1 + x + x   
(2x+1)2x2+x1+2x2+x1\frac{- \frac{\left(2 x + 1\right)^{2}}{x^{2} + x - 1} + 2}{x^{2} + x - 1}
The third derivative [src]
            /               2\
            |      (1 + 2*x) |
2*(1 + 2*x)*|-3 + -----------|
            |               2|
            \     -1 + x + x /
------------------------------
                     2        
        /          2\         
        \-1 + x + x /         
2(2x+1)((2x+1)2x2+x13)(x2+x1)2\frac{2 \left(2 x + 1\right) \left(\frac{\left(2 x + 1\right)^{2}}{x^{2} + x - 1} - 3\right)}{\left(x^{2} + x - 1\right)^{2}}