Mister Exam

Other calculators


(x^5-x^3+1)/(x-1)

Derivative of (x^5-x^3+1)/(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 5    3    
x  - x  + 1
-----------
   x - 1   
$$\frac{\left(x^{5} - x^{3}\right) + 1}{x - 1}$$
(x^5 - x^3 + 1)/(x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
     2      4    5    3    
- 3*x  + 5*x    x  - x  + 1
------------- - -----------
    x - 1                2 
                  (x - 1)  
$$\frac{5 x^{4} - 3 x^{2}}{x - 1} - \frac{\left(x^{5} - x^{3}\right) + 1}{\left(x - 1\right)^{2}}$$
The second derivative [src]
  /                      5    3    2 /        2\\
  |  /         2\   1 + x  - x    x *\-3 + 5*x /|
2*|x*\-3 + 10*x / + ----------- - --------------|
  |                          2        -1 + x    |
  \                  (-1 + x)                   /
-------------------------------------------------
                      -1 + x                     
$$\frac{2 \left(- \frac{x^{2} \left(5 x^{2} - 3\right)}{x - 1} + x \left(10 x^{2} - 3\right) + \frac{x^{5} - x^{3} + 1}{\left(x - 1\right)^{2}}\right)}{x - 1}$$
The third derivative [src]
  /                  5    3    2 /        2\     /         2\\
  |         2   1 + x  - x    x *\-3 + 5*x /   x*\-3 + 10*x /|
6*|-1 + 10*x  - ----------- + -------------- - --------------|
  |                      3              2          -1 + x    |
  \              (-1 + x)       (-1 + x)                     /
--------------------------------------------------------------
                            -1 + x                            
$$\frac{6 \left(10 x^{2} + \frac{x^{2} \left(5 x^{2} - 3\right)}{\left(x - 1\right)^{2}} - \frac{x \left(10 x^{2} - 3\right)}{x - 1} - 1 - \frac{x^{5} - x^{3} + 1}{\left(x - 1\right)^{3}}\right)}{x - 1}$$
The graph
Derivative of (x^5-x^3+1)/(x-1)