Mister Exam

Other calculators


(ln^3(x))^1/2

Derivative of (ln^3(x))^1/2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   _________
  /    3    
\/  log (x) 
$$\sqrt{\log{\left(x \right)}^{3}}$$
  /   _________\
d |  /    3    |
--\\/  log (x) /
dx              
$$\frac{d}{d x} \sqrt{\log{\left(x \right)}^{3}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of is .

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
     _________
    /    3    
3*\/  log (x) 
--------------
  2*x*log(x)  
$$\frac{3 \sqrt{\log{\left(x \right)}^{3}}}{2 x \log{\left(x \right)}}$$
The second derivative [src]
     _________              
    /    3     /       1   \
3*\/  log (x) *|-2 + ------|
               \     log(x)/
----------------------------
           2                
        4*x *log(x)         
$$\frac{3 \left(-2 + \frac{1}{\log{\left(x \right)}}\right) \sqrt{\log{\left(x \right)}^{3}}}{4 x^{2} \log{\left(x \right)}}$$
The third derivative [src]
     _________                           
    /    3     /       3           1    \
3*\/  log (x) *|1 - -------- - ---------|
               |    4*log(x)        2   |
               \               8*log (x)/
-----------------------------------------
                 3                       
                x *log(x)                
$$\frac{3 \cdot \left(1 - \frac{3}{4 \log{\left(x \right)}} - \frac{1}{8 \log{\left(x \right)}^{2}}\right) \sqrt{\log{\left(x \right)}^{3}}}{x^{3} \log{\left(x \right)}}$$
The graph
Derivative of (ln^3(x))^1/2