Mister Exam

Other calculators


(t^2-3)^4

Derivative of (t^2-3)^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        4
/ 2    \ 
\t  - 3/ 
(t23)4\left(t^{2} - 3\right)^{4}
  /        4\
d |/ 2    \ |
--\\t  - 3/ /
dt           
ddt(t23)4\frac{d}{d t} \left(t^{2} - 3\right)^{4}
Detail solution
  1. Let u=t23u = t^{2} - 3.

  2. Apply the power rule: u4u^{4} goes to 4u34 u^{3}

  3. Then, apply the chain rule. Multiply by ddt(t23)\frac{d}{d t} \left(t^{2} - 3\right):

    1. Differentiate t23t^{2} - 3 term by term:

      1. Apply the power rule: t2t^{2} goes to 2t2 t

      2. The derivative of the constant (1)3\left(-1\right) 3 is zero.

      The result is: 2t2 t

    The result of the chain rule is:

    8t(t23)38 t \left(t^{2} - 3\right)^{3}

  4. Now simplify:

    8t(t23)38 t \left(t^{2} - 3\right)^{3}


The answer is:

8t(t23)38 t \left(t^{2} - 3\right)^{3}

The graph
02468-8-6-4-2-1010-200000000200000000
The first derivative [src]
            3
    / 2    \ 
8*t*\t  - 3/ 
8t(t23)38 t \left(t^{2} - 3\right)^{3}
The second derivative [src]
           2            
  /      2\  /        2\
8*\-3 + t / *\-3 + 7*t /
8(t23)2(7t23)8 \left(t^{2} - 3\right)^{2} \cdot \left(7 t^{2} - 3\right)
The third derivative [src]
     /        2\ /      2\
48*t*\-9 + 7*t /*\-3 + t /
48t(t23)(7t29)48 t \left(t^{2} - 3\right) \left(7 t^{2} - 9\right)
The graph
Derivative of (t^2-3)^4