Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of is .
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$\frac{3 \log{\left(t \right)}^{2}}{t}$$
The second derivative
[src]
3*(2 - log(t))*log(t)
---------------------
2
t
$$\frac{3 \left(2 - \log{\left(t \right)}\right) \log{\left(t \right)}}{t^{2}}$$
The third derivative
[src]
/ 2 \
6*\1 + log (t) - 3*log(t)/
--------------------------
3
t
$$\frac{6 \left(\log{\left(t \right)}^{2} - 3 \log{\left(t \right)} + 1\right)}{t^{3}}$$