Mister Exam

Derivative of ln(t)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3   
log (t)
$$\log{\left(t \right)}^{3}$$
log(t)^3
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of is .

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
     2   
3*log (t)
---------
    t    
$$\frac{3 \log{\left(t \right)}^{2}}{t}$$
The second derivative [src]
3*(2 - log(t))*log(t)
---------------------
           2         
          t          
$$\frac{3 \left(2 - \log{\left(t \right)}\right) \log{\left(t \right)}}{t^{2}}$$
The third derivative [src]
  /       2              \
6*\1 + log (t) - 3*log(t)/
--------------------------
             3            
            t             
$$\frac{6 \left(\log{\left(t \right)}^{2} - 3 \log{\left(t \right)} + 1\right)}{t^{3}}$$