Mister Exam

Other calculators

Derivative of ln(sin(2x))/(1/tan(2x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(2*x))
-------------
  /   1    \ 
  |--------| 
  \tan(2*x)/ 
$$\frac{\log{\left(\sin{\left(2 x \right)} \right)}}{\frac{1}{\tan{\left(2 x \right)}}}$$
log(sin(2*x))/1/tan(2*x)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. Let .

          2. The derivative of sine is cosine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          To find :

          1. Let .

          2. The derivative of cosine is negative sine:

          3. Then, apply the chain rule. Multiply by :

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: goes to

              So, the result is:

            The result of the chain rule is:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  /          2     \                 2*cos(2*x)*tan(2*x)
- \-2 - 2*tan (2*x)/*log(sin(2*x)) + -------------------
                                           sin(2*x)     
$$- \left(- 2 \tan^{2}{\left(2 x \right)} - 2\right) \log{\left(\sin{\left(2 x \right)} \right)} + \frac{2 \cos{\left(2 x \right)} \tan{\left(2 x \right)}}{\sin{\left(2 x \right)}}$$
The second derivative [src]
  /  /       2     \              /       2     \                                                    \
  |  |    cos (2*x)|            2*\1 + tan (2*x)/*cos(2*x)     /       2     \                       |
4*|- |1 + ---------|*tan(2*x) + -------------------------- + 2*\1 + tan (2*x)/*log(sin(2*x))*tan(2*x)|
  |  |       2     |                     sin(2*x)                                                    |
  \  \    sin (2*x)/                                                                                 /
$$4 \left(- \left(1 + \frac{\cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) \tan{\left(2 x \right)} + 2 \left(\tan^{2}{\left(2 x \right)} + 1\right) \log{\left(\sin{\left(2 x \right)} \right)} \tan{\left(2 x \right)} + \frac{2 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}\right)$$
The third derivative [src]
  /                                                                                            /       2     \                                                        \
  |                                                                                            |    cos (2*x)|                                                        |
  |                                                                                          2*|1 + ---------|*cos(2*x)*tan(2*x)                                      |
  |                    /       2     \                                                         |       2     |                       /       2     \                  |
  |    /       2     \ |    cos (2*x)|     /       2     \ /         2     \                   \    sin (2*x)/                     6*\1 + tan (2*x)/*cos(2*x)*tan(2*x)|
8*|- 3*\1 + tan (2*x)/*|1 + ---------| + 2*\1 + tan (2*x)/*\1 + 3*tan (2*x)/*log(sin(2*x)) + ----------------------------------- + -----------------------------------|
  |                    |       2     |                                                                     sin(2*x)                              sin(2*x)             |
  \                    \    sin (2*x)/                                                                                                                                /
$$8 \left(- 3 \left(1 + \frac{\cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) \left(\tan^{2}{\left(2 x \right)} + 1\right) + \frac{2 \left(1 + \frac{\cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}\right) \cos{\left(2 x \right)} \tan{\left(2 x \right)}}{\sin{\left(2 x \right)}} + 2 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) \log{\left(\sin{\left(2 x \right)} \right)} + \frac{6 \left(\tan^{2}{\left(2 x \right)} + 1\right) \cos{\left(2 x \right)} \tan{\left(2 x \right)}}{\sin{\left(2 x \right)}}\right)$$