Mister Exam

Derivative of ln(1+sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(1 + sin(x))
$$\log{\left(\sin{\left(x \right)} + 1 \right)}$$
log(1 + sin(x))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of sine is cosine:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
  cos(x)  
----------
1 + sin(x)
$$\frac{\cos{\left(x \right)}}{\sin{\left(x \right)} + 1}$$
The second derivative [src]
 /    2              \ 
 | cos (x)           | 
-|---------- + sin(x)| 
 \1 + sin(x)         / 
-----------------------
       1 + sin(x)      
$$- \frac{\sin{\left(x \right)} + \frac{\cos^{2}{\left(x \right)}}{\sin{\left(x \right)} + 1}}{\sin{\left(x \right)} + 1}$$
The third derivative [src]
/            2                  \       
|       2*cos (x)      3*sin(x) |       
|-1 + ------------- + ----------|*cos(x)
|                 2   1 + sin(x)|       
\     (1 + sin(x))              /       
----------------------------------------
               1 + sin(x)               
$$\frac{\left(-1 + \frac{3 \sin{\left(x \right)}}{\sin{\left(x \right)} + 1} + \frac{2 \cos^{2}{\left(x \right)}}{\left(\sin{\left(x \right)} + 1\right)^{2}}\right) \cos{\left(x \right)}}{\sin{\left(x \right)} + 1}$$