Mister Exam

Other calculators

Derivative of ln*tg(2x+1/4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)*tan(2*x + 1/4)
$$\log{\left(x \right)} \tan{\left(2 x + \frac{1}{4} \right)}$$
log(x)*tan(2*x + 1/4)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. The derivative of is .

    ; to find :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
tan(2*x + 1/4)   /         2           \       
-------------- + \2 + 2*tan (2*x + 1/4)/*log(x)
      x                                        
$$\left(2 \tan^{2}{\left(2 x + \frac{1}{4} \right)} + 2\right) \log{\left(x \right)} + \frac{\tan{\left(2 x + \frac{1}{4} \right)}}{x}$$
The second derivative [src]
                     /       2           \                                                
  tan(1/4 + 2*x)   4*\1 + tan (1/4 + 2*x)/     /       2           \                      
- -------------- + ----------------------- + 8*\1 + tan (1/4 + 2*x)/*log(x)*tan(1/4 + 2*x)
         2                    x                                                           
        x                                                                                 
$$8 \left(\tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right) \log{\left(x \right)} \tan{\left(2 x + \frac{1}{4} \right)} + \frac{4 \left(\tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right)}{x} - \frac{\tan{\left(2 x + \frac{1}{4} \right)}}{x^{2}}$$
The third derivative [src]
  /                   /       2           \                                                               /       2           \               \
  |tan(1/4 + 2*x)   3*\1 + tan (1/4 + 2*x)/     /       2           \ /         2           \          12*\1 + tan (1/4 + 2*x)/*tan(1/4 + 2*x)|
2*|-------------- - ----------------------- + 8*\1 + tan (1/4 + 2*x)/*\1 + 3*tan (1/4 + 2*x)/*log(x) + ---------------------------------------|
  |       3                     2                                                                                         x                   |
  \      x                     x                                                                                                              /
$$2 \left(8 \left(\tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right) \left(3 \tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right) \log{\left(x \right)} + \frac{12 \left(\tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right) \tan{\left(2 x + \frac{1}{4} \right)}}{x} - \frac{3 \left(\tan^{2}{\left(2 x + \frac{1}{4} \right)} + 1\right)}{x^{2}} + \frac{\tan{\left(2 x + \frac{1}{4} \right)}}{x^{3}}\right)$$