/4*x - 3\ log|-------| \ x /
log((4*x - 3)/x)
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/4 4*x - 3\ x*|- - -------| |x 2 | \ x / --------------- 4*x - 3
/ -3 + 4*x\ / 1 4 \ |4 - --------|*|- - - --------| \ x / \ x -3 + 4*x/ ------------------------------- -3 + 4*x
/ -3 + 4*x\ /1 16 4 \ 2*|4 - --------|*|-- + ----------- + ------------| \ x / | 2 2 x*(-3 + 4*x)| \x (-3 + 4*x) / -------------------------------------------------- -3 + 4*x