Mister Exam

Derivative of ln((4x-3)/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /4*x - 3\
log|-------|
   \   x   /
$$\log{\left(\frac{4 x - 3}{x} \right)}$$
log((4*x - 3)/x)
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      To find :

      1. Apply the power rule: goes to

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
  /4   4*x - 3\
x*|- - -------|
  |x       2  |
  \       x   /
---------------
    4*x - 3    
$$\frac{x \left(\frac{4}{x} - \frac{4 x - 3}{x^{2}}\right)}{4 x - 3}$$
The second derivative [src]
/    -3 + 4*x\ /  1      4    \
|4 - --------|*|- - - --------|
\       x    / \  x   -3 + 4*x/
-------------------------------
            -3 + 4*x           
$$\frac{\left(4 - \frac{4 x - 3}{x}\right) \left(- \frac{4}{4 x - 3} - \frac{1}{x}\right)}{4 x - 3}$$
The third derivative [src]
  /    -3 + 4*x\ /1         16            4      \
2*|4 - --------|*|-- + ----------- + ------------|
  \       x    / | 2             2   x*(-3 + 4*x)|
                 \x    (-3 + 4*x)                /
--------------------------------------------------
                     -3 + 4*x                     
$$\frac{2 \left(4 - \frac{4 x - 3}{x}\right) \left(\frac{16}{\left(4 x - 3\right)^{2}} + \frac{4}{x \left(4 x - 3\right)} + \frac{1}{x^{2}}\right)}{4 x - 3}$$