Mister Exam

Other calculators


x^3/(2(x+1)^2)

Derivative of x^3/(2(x+1)^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     3    
    x     
----------
         2
2*(x + 1) 
x32(x+1)2\frac{x^{3}}{2 \left(x + 1\right)^{2}}
x^3/((2*(x + 1)^2))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x3f{\left(x \right)} = x^{3} and g(x)=2(x+1)2g{\left(x \right)} = 2 \left(x + 1\right)^{2}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=x+1u = x + 1.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

        1. Differentiate x+1x + 1 term by term:

          1. The derivative of the constant 11 is zero.

          2. Apply the power rule: xx goes to 11

          The result is: 11

        The result of the chain rule is:

        2x+22 x + 2

      So, the result is: 4x+44 x + 4

    Now plug in to the quotient rule:

    x3(4x+4)+6x2(x+1)24(x+1)4\frac{- x^{3} \left(4 x + 4\right) + 6 x^{2} \left(x + 1\right)^{2}}{4 \left(x + 1\right)^{4}}

  2. Now simplify:

    x2(x+3)2(x3+3x2+3x+1)\frac{x^{2} \left(x + 3\right)}{2 \left(x^{3} + 3 x^{2} + 3 x + 1\right)}


The answer is:

x2(x+3)2(x3+3x2+3x+1)\frac{x^{2} \left(x + 3\right)}{2 \left(x^{3} + 3 x^{2} + 3 x + 1\right)}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
                   3           
   2     1        x *(-4 - 4*x)
3*x *---------- + -------------
              2              4 
     2*(x + 1)      4*(x + 1)  
x3(4x4)4(x+1)4+3x212(x+1)2\frac{x^{3} \left(- 4 x - 4\right)}{4 \left(x + 1\right)^{4}} + 3 x^{2} \frac{1}{2 \left(x + 1\right)^{2}}
The second derivative [src]
    /        2           \
    |       x        2*x |
3*x*|1 + -------- - -----|
    |           2   1 + x|
    \    (1 + x)         /
--------------------------
                2         
         (1 + x)          
3x(x2(x+1)22xx+1+1)(x+1)2\frac{3 x \left(\frac{x^{2}}{\left(x + 1\right)^{2}} - \frac{2 x}{x + 1} + 1\right)}{\left(x + 1\right)^{2}}
The third derivative [src]
  /                 3          2  \
  |     6*x      4*x        9*x   |
3*|1 - ----- - -------- + --------|
  |    1 + x          3          2|
  \            (1 + x)    (1 + x) /
-----------------------------------
                     2             
              (1 + x)              
3(4x3(x+1)3+9x2(x+1)26xx+1+1)(x+1)2\frac{3 \left(- \frac{4 x^{3}}{\left(x + 1\right)^{3}} + \frac{9 x^{2}}{\left(x + 1\right)^{2}} - \frac{6 x}{x + 1} + 1\right)}{\left(x + 1\right)^{2}}
The graph
Derivative of x^3/(2(x+1)^2)